Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Sustainability Année : 2021

Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production

(1) , (2) , (2, 3, 4) ,
1
2
3
4

Résumé

The accurate prediction of wind energy production is crucial for an affordable and reliable power supply to consumers. Prediction models are used as decision-aid tools for electric grid operators to dynamically balance the energy production provided by a pool of diverse sources in the energy mix. However, different sources of uncertainty affect the predictions, providing the decision-makers with non-accurate and possibly misleading information for grid operation. In this regard, this work aims to quantify the possible sources of uncertainty that affect the predictions of wind energy production provided by an ensemble of Artificial Neural Network (ANN) models. The proposed Bootstrap (BS) technique for uncertainty quantification relies on estimating Prediction Intervals (PIs) for a predefined confidence level. The capability of the proposed BS technique is verified, considering a 34 MW wind plant located in Italy. The obtained results show that the BS technique provides a more satisfactory quantification of the uncertainty of wind energy predictions than that of a technique adopted by the wind plant owner and the Mean-Variance Estimation (MVE) technique of literature. The PIs obtained by the BS technique are also analyzed in terms of different weather conditions experienced by the wind plant and time horizons of prediction.

Dates et versions

hal-03480476 , version 1 (14-12-2021)

Licence

Paternité - CC BY 4.0

Identifiants

Citer

Sameer Al-Dahidi, Piero Baraldi, Enrico Zio, Lorenzo Montelatici. Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production. Sustainability, 2021, 13 (11), pp.6417. ⟨10.3390/su13116417⟩. ⟨hal-03480476⟩
13 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More