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Abstract

The material extrusion process is investigated by focusing on the geometry of a single

strand extruded through a printing nozzle and deposited on a substrate of a 3D printer.

An experimental protocol is set to determine the width W , and the height H, of a

strand. The geometry depends mainly on the nozzle diameter D, the gap between the

substrate and the tip of the nozzle g, the extrusion velocity U and the printing velocity

V . The relevant parameter to determine W/D and H/g is reduced to one dimensionless

parameter equal to (D/g)(U/V ).

A computational multiphase flow is described using a level set approach and a finite

element method. The heat transfer is also taken into account in the set of governing

equations. The polymer is considered as a generalised Newtonian fluid. An accurate

description of the interface between the polymer and the surrounding air is developed

based on an anisotropic remeshing procedure.

Two different situations are numerically solved for which: (i) a first case with a g/D

ratio less than one and (ii) a second case with a g/D ratio larger than one. In the first

situation, the spreading below the nozzle is more or less radial around the vertical axis of

the extruder which is not the case in the second situation. The numerical shape geometry

is in good agreement with experimental observations. The thermal cooling underlines

that the relevant parameters are the perimeter and the area of the strand cross-section

and the Péclet number based on the printing velocity. The numerical predictions of W/D

and H/g agree with experimental results.
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1. Introduction

The material extrusion process, also known under the name of Fused Filament Fab-

rication (FFF), is an additive manufacturing technology mainly used with thermoplastic

polymers. The FFF process deposits melted filaments of polymer layer upon layer to

build an object designed with a Computer-Aided Design (CAD) software. A solid fila-

ment of polymer is fed into a liquefier with a pinch roller mechanism. The polymer is

heated above its melting temperature in the liquefier and then deposited on a surface.

The desired object is obtained after solidification of the polymer. According to Bellini et

al. [1], the geometry of the liquefier can be divided in three areas: (i) the neat filament

is introduced and melted in an upstream cylindrical part; (ii) it is then forced through

a convergent; (iii) it is extruded through a capillary. This simple view of the process

underlines the transient character of the process. While the residence time of the poly-

mer is roughly around two seconds in the liquefier, the material undergoes heating, large

deformation and cooling. By nature, the deposition of a filament is an out of equilibrium

process. The determination of the strand dimensions is not a simple task. These pre-

dictions are useful to better calibrate the deposition path as a function of the geometry

of the printed object. The purpose of the current article is to address the shape of a

filament under a point of view of fluid mechanics and thermal heat transfer.

Geometry, kinematic and thermal parameters govern the FFF process such as (i) the

gap distance between the nozzle and the depositing surface g, (ii) the diameter of the

nozzle D, (iii) the extrusion velocity U , (iv) the printing velocity V , (v) temperatures

of the liquefier, substrate, and surrounding air. Material properties have a dominant

influence on the extrusion and the deposition steps. Using a finite element analysis,

Bellini [2] investigated the influence of the printing head on the strand shape. The

viscosity of the polymer is described using a power law coupled with an Arrhenius law

to take into account the temperature dependence. When the gap is small, the flattening

of the top surface was underlined. The velocity and the temperature fields are also

described during the strand deposition. These simulations are in good agreements with

experimental observations in terms of geometry and temperature distribution.

Arguing a simple dimensional analysis, the major parameters influencing the strand

shape are g/D and U/V ratios. Hebda et al. [3] studied the influence of the gap distance,

extrusion, and printing velocities on the strand geometry. To determine width and height,

the strand cross sections were measured by micro CT-imaging. An empirical relation

between the strand width and the square root of the velocity ratio U/V is proposed for

ABS and PLA polymers. According to Hebda et al. [3], the deposited strand width does

not depend on the g/D ratio. Furthermore, they argued that the cross section is close

to an elliptic shape.
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Comminal et al. [4] computed the strand shape by modelling the flow field with a

finite volume method. The interface between the polymer and the air is tracked by a

coupled level-set/volume-of-fluid method. The polymer is considered as an incompress-

ible, isothermal, and Newtonian fluid. Two dimensionless parameters are investigated:

the velocity ratio V/U and the normalised gap g/D. The strand thickness is not always

equal to the gap and varies between −10 to +35 % of the gap. By performing optical

microscopy measurements, Serdeczny et al. [5] assessed the strand geometry found by

Comminal et al. [4]. Based on a volume-of-fluid method, Gosset et al. [6] performed

numerical simulations of strand deposition. The temperature is assumed uniform. The

polymer viscosity is described by a Cross power law. They measured the strand lat-

eral geometry by recording the deposition with a high-speed video camera. They found

good agreements with numerical results. The experimental protocol allowed to highlight

the influence of the nozzle velocity on irregularities of the strand surface. Behdani et

al. [7] used different constitutive equations, with and without thermal coupling. They

showed that a temperature dependent power law behaviour provides the best ageement

with Serdeczny et al.’s experiments [5]. Agassant et al. [8] proposed an analytic model

for the strand deposition shape based on a Stefan flow around the nozzle and a no-slip

boundary condition all along the bottom of the nozzle. Simple relations for the strand

height and width are proposed. These approximate solutions are compared to numerical

computations achieved for an incompressible Newtonian fluid in isothermal condition.

Xia et al. [9, 10, 11, 12] computed the strand deposition based on a front tracking/finite

volume method. They highlighted the importance of the visco-elastic behaviour of the

polymer. When the viscoelasticity is taken into account, an increase of the deposited

strand height and a decrease of the strand width are found.

As the above referred authors, experimental measurements of the single strand depo-

sition have been performed on a wide series of printing conditions. The originality of our

paper is to express the strand height and width as a function of a unique dimensionless

parameter issued from our previous analytical model [8]. To complete experimental inves-

tigations, a finite element analysis coupling fluid dynamics and heat transfer is achieved.

An accurate remeshing procedure allows to precisely capture the interface between the

polymer and surrounding air.

The paper is organised as follows: The experimental measurements of strand shape

are presented in section 2. Optical microscopy measurements are done on strands printed

with two different nozzle diameters D, with different gaps g, various extrusion velocities

U and nozzle velocities V . The numerical analysis of the strand shape is developed in

section 3 for two cases. Section 4 is devoted to the comparison of experimental and

numerical predictions. The last section summarises the main results and presents few
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perspectives. A nomenclature is provided in Appendix A. The numerical procedure

developed to study the fluid dynamics of the polymer deposition is detailed in Appendix

B.

2. Experimental analysis of strand cross-sectional geometry

2.1. Materials

Experiments and numerical computations are achieved with an acrylonitrile butadiene

styrene (ABS), polymer commonly used in the FFF process. The ABS is purchased as

neat filaments from Grossiste3D®. According to the supplier, the density is equal to

1010 kg/m3 at room temperature. The glass transition temperature is measured by

Differential Scanning Calorimetry (DSC) on a DSC4000 from PerkinElmer®. The value

of Tg is found equal to 105 ◦C. The specific heat capacity at constant pressure and

thermal conductivity are taken from [13]. Table 1 summarises these properties.

Table 1: Properties of the ABS polymer used in numerical computations. The values of Cp and k are
taken from [13].

ρ Cp k Tg
kg/m3 Jkg−1K−1 W m−1 K−1 ◦C
1010 2100 0.21 105

Rheology measurements are performed on a parallel plate rheometer ARES from

TA Instruments® in dynamic oscillations. Measurements are done at 1 % strain on a

frequency range from 0.1 to 100 rad s−1 and a temperature range from 210 to 240 ◦C.

The different viscosity curves are then shifted to a reference temperature of 220 ◦C by

introducing a shift factor aT , see [14] for more details. The obtained general curve is

then fitted by a Carreau-Yasuda law given by

η(T, γ̇) =
η0aT

[1 + (aTλγ̇)
a
]
1−m

a

, (1)

with η0 the Newtonian (or zero shear rate) viscosity, λ the relaxation time, γ̇ the shear

rate, a the Yasuda coefficient controlling the transition between the Newtonian plateau

and the power law regime and m the shear thinning or power law index. The tempera-

ture dependence of the rheological data is integrated via a shift factor aT following an

Arrhenius law:

aT = exp

[
Ea
R

(
1

T
− 1

Tref

)]
, (2)

with R the ideal gas constant, Ea the polymer activation energy and Tref the reference

temperature. Table 2 gathers the fitted parameters of equations (1) and (2).
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Table 2: Fitting parameters of the Carreau-Yasuda and Arrhenius laws for the ABS.

η0 λ a m Ea Tref

Pa · s s - - kJ mol−1 ◦C
3.04× 103 3.2× 10−2 0.6 0.27 115.05 220

(a) U=4 m min−1, V=2 m min−1. (b) U=5 m min−1, V=1 m min−1.

Figure 1: Strand cross section measured with an optical microscope. The printing is performed at
g=0.6 mm and D=0.4 mm.

2.2. Cross-sectional geometry of a single strand

An experimental protocol is developed to measure the strand shape as a function of

the printing conditions. Single strand deposition is done using an Original Prusa i3 MK3

from the brand Prusa®. The strands are printed as a function of the U/V ratio for

different printing velocities V . All samples have a length of 10 cm. The printing velocity

is an explicit parameter in the G-code file written to print the strand. The extrusion

velocity is indirectly assigned by setting the length of neat filament extruded through the

liquefier. The desired U is computed by mass balance as stated by Xu et al. [15]. The

temperature of the extruder is set equal to 230 ◦C and the temperature of the substrate

is set equal to 94 ◦C.

The strand is cut at approximately one half of its length. Its shape is observed using

an optical microscope Olympus® PMG3 in reflection mode. For a given ratio U/V ,

around ten printed strands are measured. The average width and height are computed

for a given set of printing velocities. Examples of strand measurements are shown in

Figure 1 for which the gap is set to 0.65 mm with a nozzle diameter of 0.4 mm. The

filament width increases significantly when the extrusion velocity increases. While the

gap is the same between the two experiments shown in Figure 1, the width is three time

larger when U/V is equal to 5 than when U/V is equal to 2. The height does not change

in large proportion.

These two examples underline the asymmetric shape of the cross section of the strand.

The contact with the substrate leads to a flattening of the polymer. The upper part of

the strand is more similar to an elliptic shape. These cross section geometries correspond
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to a case for which g is larger than D.

In the following, the analysis is focused on the two main characteristics of the cross

section, i.e. the width W and the height H.

2.3. Strand width as a function of the printing parameters

The determination of the strand shape deposited by the FFF process is a problem of

fluid dynamics. A simple dimensional analysis leads to consider the behaviour of W/D

as a function of g/D, and U/V ratios. Of course, other dimensionless numbers should be

involved, like Reynolds or capillary numbers among others. As it will be justified latter,

the Reynolds number is small enough to be considered as irrelevant. The capillary

number is much larger than one meaning that viscous effects are dominant compared to

surface tension as it has been shown by Gosset et al. [6]. Experiments are done with two

nozzles with D equal to 0.4 and 0.3 mm. The g/D ratio varies in the range of [0.5; 1.625].

The velocity ratio is in the range of [1.5; 5]. To confirm the weak influence of the printing

velocity, experiments have been achieved for two values of V .

According to Hebda et al. [3], experimental values of W/D are represented as a func-

tion of
√
U/V . Figure 2 gathers W/D as a function of

√
U/V obtained experimentally.

Data have been plotted for four g/D ratios. For a given g/D ratio, W/D scales linearly

with
√
U/V .

The decrease of g/D ratio leads to an increase of W/D. When the g/D ratio is larger

than one, there is no squeezing effect between the substrate and the nozzle especially for

low viscoelastic polymers. This is supposed to be the case for the ABS polymer due to

the low value of λ given in Table 2. When g is lower than D, the polymer is squeezed

between the nozzle and the substrate. This effect is even more important for a large

value of U/V . This trend can be explained by the pressure applied on the polymer.

Figure 2 pinpoints that this squeezing effect is least for g/D equal to 0.5. At large values

of
√
U/V , the strand width obtained for g/D equal to 0.5 is close to the results obtained

at g/D equal to 0.8.

The scaling in
√
U/V has not be explained in [3] as well as the dependence of the g/D

ratio pointed out in Figure 2. In our previous contribution [8], the shape of the strand

has been analysed using a simplified analytical model of the flow around the nozzle. The

length L over which the polymer is spread in the front of the nozzle is given by

L =
−Rn +

√
(Rn −D)2 + πD2

g
U
V

(
Rn − D

2

)
2

, (3)

with Rn the external radius of the nozzle. The spreading on the side is assumed to be

the same as the spreading in the front of the nozzle. The strand section is considered as
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D=0.3 mm, g/D=0.5, V=0.5 m/min
D=0.3 mm, g/D=0.5, V=1 m/min
D=0.4 mm, g/D=0.8, V=0.5 m/min
D=0.4 mm, g/D=0.8, V=1 m/min
D=0.3 mm, g/D=0.8, V=0.5 m/min
D=0.4 mm, g/D=1.25, V=1 m/min
D=0.4 mm, g/D=1.625, V=1 m/min

Figure 2: W/D as a function of
√
U/V obtained experimentally for two printing velocities, two nozzle

diameters and four g/D ratios.

a rectangular shape. The strand width is then given by the following relation

W

D
= 1− Rn

D
+

√(
Rn
D

–1

)2

+
πD

g

U

V

(
Rn
D
− 1

2

)
. (4)

According to the geometry characteristics of the nozzle [16], the first term, (Rn/D−1)2,

in the square root is much less than the second term. It can thus be neglected as a first

approximation. The strand width is expected to depend predominantly on

α =
D

g

U

V
. (5)

The ratio W/D is plotted as a function of
√
α for the data of Figure 3. The data clearly

fall in a single curve when the g/D ratio is larger or equal to 0.8.

At small
√
α values, W/D seems to be a linear function. When

√
α increases the

slope decreases and the curve takes the shape of a parabola which justifies introducing

an additional term function of α. The solid line in Figure 3 is a fitted solution written

as follows
W

D
= −2.073 + 4.059

√
α− 0.659α. (6)

Results for the g/D ratio equal to 0.5 are singular and the fitting curve has been done

without these data. This will require more investigations. Notice also that this analysis
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D=0.3 mm, g/D=0.5, V=1 m/min
D=0.4 mm, g/D=0.8, V=0.5 m/min
D=0.4 mm, g/D=0.8, V=1 m/min
D=0.3 mm, g/D=0.8, V=0.5 m/min
D=0.4 mm, g/D=1.25, V=1 m/min
D=0.4 mm, g/D=1.625, V=1 m/min

Figure 3: W/D as a function of
√
α obtained experimentally for two printing velocities, two nozzle

diameters and four g/D ratios.

has been done for a particular polymer and without changing the thermal conditions.

2.4. Strand height as a function of the printing parameters

The area of the deposited strand is related to the U/V ratio by a simple mass balance

as follows [3, 15]

A =
πD2

4

U

V
. (7)

The knowledge of the strand width leads to the determination of its height through

the mass balance and assuming an elliptic strand shape [3]:

H

D
=
U

V

D

W
. (8)

Figure 4 depicts the H/D ratio as a function of U/V for different g/D ratios obtained

experimentally. A linear trend of H/D as a function of U/V appears. The height of the

strand increases with g/D ratio with the same explanation as for the strand width. When

g/D is lower than one, the strand is squished between the substrate and the nozzle. When

g/D is larger than one, the strand height is free to develop. The dispersion for the various

g/D values is important which limits the possibility to find a general synthesis of these

data.
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D=0.3 mm, g/D=0.5, V=0.5 m/min
D=0.3 mm, g/D=0.5, V=1 m/min
D=0.4 mm, g/D=0.8, V=0.5 m/min
D=0.4 mm, g/D=0.8, V=1 m/min
D=0.3 mm, g/D=0.8, V=0.5 m/min
D=0.3 mm, g/D=0.8, V=1 m/min
D=0.4 mm, g/D=1.25, V=1 m/min
D=0.4 mm, g/D=1.625, V=1 m/min

Figure 4: H/D as a function of U/V obtained experimentally for two printing velocities, two nozzle
diameters and four g/D ratios.
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Eq. (10)
Elliptic
D=0.4 mm, g/D=0.5, V=0.5 m/min
D=0.4 mm, g/D=0.5, V=1 m/min
D=0.3 mm, g/D=0.5, V=0.5 m/min
D=0.3 mm, g/D=0.5, V=1 m/min
D=0.4 mm, g/D=0.8, V=0.5 m/min
D=0.4 mm, g/D=0.8, V=1 m/min
D=0.3 mm, g/D=0.8, V=0.5 m/min
D=0.3 mm, g/D=0.8, V=1 m/min
D=0.4 mm, g/D=1.25, V=1 m/min
D=0.4 mm, g/D=1.625, V=1 m/min

Figure 5: H/g as a function of α obtained experimentally for two printing velocities, two nozzle diameters
and four g/D ratios.
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Equation (8) allows to write H/g as follows

H

g
=
D

g

U

V

D

W
=
αD

W
. (9)

Since W/D is a function of α, it is expected to find a scaling of H/g as a function of the

same parameter. Figure 5 provides the behaviour of H/g as a function of α. A linear

single curve is observed. It is noteworthy that the data obtained for g/D equal to 0.5

are in agreement with the other g/D ratios. The black solid line represents the solution

obtained by a linear regression given by

H

g
= 0.372 + 0.184α. (10)

The red solid line is a solution using equation (9) and the fitting equation (6). Figure 5

shows that this solution is equivalent to the preceding one with a slight shift on the

ordinate values.

The knowledge of the strand width and height is of prime importance for the setting of

the deposition path to build an object with the desired infill. The empirical model gives

a good first approximation of the strand height. The discrepancies between experimental

data and equation (10) do not exceed 16 %.

3. Numerical prediction of the strand shape

In parallel of the experimental work, numerical computations have been achieved

with our own finite element C++ library. The numerical investigations focus on the

polymer spreading around the extruder. Both the polymer and the surrounding air are

accounted for. The fluid dynamics of this multiphase problem is considered as a single-

fluid representation using a level set method [17, 18]. The polymer is considered as a

temperature dependant generalised Newtonian fluid. The dynamic viscosity is given by

the Carreau-Yasuda law, eq. (1). Both polymer and air are considered as incompressible.

Since the process is achieved in an open system, the overall pressure does not change

significantly to modify the air density. Moreover, the thermal gradients are not strong

enough to consider thermal dilatation of the surrounding air. The interface between the

two phases leads to consider the surface tension. This supplementary force is added using

the continuum surface force proposed by Brackbill et al. [19]. The heat transfer equation

is also considered. The viscous dissipation is neglected.

The reference frame is attached to the nozzle. This means that the motion is simply

considered by sliding the substrate in the opposite direction of the motion of the extruder.

In this work, only a uniform motion is considered.
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Figure 6: Partial view in the symmetric plane of the domain in the initial state with the two subdomains
and the main boundaries.

Figure 6 shows the cut in the symmetric plane of the computational domain. The

geometry of the nozzle is taken from the design of the E3D-V6 nozzle [16]. Initial positions

of the polymer and air domains are depicted. The main boundaries are also indicated.

Following the best practices in fluid mechanics, the governing equations are nor-

malised to reduce the number of parameters. Since the work is focused at a scale

corresponding to the gap between the tip of the nozzle and the substrate, the spatial

dimensions are scaled by g. The characteristic velocity is the printing velocity, V . All

physical properties, density, dynamic viscosity, heat capacity, thermal conductivity are

normalised by the properties of the polymer given in Table 1. The characteristic viscosity

is taken on the Newtonian plateau given in Table 2.

The thermal problem is driven by the extruder temperature, Text, the substrate tem-

perature, Tsub and the temperature of the surrounding air, Tair. The reduced temperature

is given by

θ =
T − Tair

Text − Tair
, (11)

to have a dimensionless temperature ranging from 0 and 1.

Apart from the aspect ratio, g/D and the velocity ratio U/V , four dimensionless

numbers are needed to solve the numerical problem. The Reynolds number, Re, the

capillary number, Ca, the Péclet number, Pe and the Weissenberg number, Wi, are
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Table 3: Values of dimensionless numbers for the two numerical simulations.

g/D 0.75 1.625
Re 2.77× 10−6 3.60× 10−6

Ca 1748.5 1748.5
Pe 84.17 109.42
Wi 1.78 0.82

defined by

Re =
ρpV g

η0
, (12)

Ca =
η0V

γ
, (13)

Pe =
ρpCppV g

kp
, (14)

Wi =
λV

g
. (15)

As a purely viscous behaviour is considered, the Weissenberg number Wi is only used to

make the parameter λ of eq. (1) dimensionless. In Ca, γ is the surface tension between

the polymer and the air. According to Bellehumeur et al. [20], γ is taken equal to

2.8× 10−2 N m−1. The substrate, the nozzle and the air temperatures are taken equal

to 94, 230 and 40 ◦C, respectively. In the initial state, the polymer temperature inside

the nozzle is taken equal to the nozzle temperature.

To be self-contained, the governing equations, the boundary conditions and the nu-

merical method are detailed in Appendix B.

3.1. Spreading dynamics for a g/D ratio smaller and larger than one

From the experimental analysis, the spreading behaves differently if g/D ratio is

either smaller or larger than one. The main characteristics of the spreading are carefully

analysed when g/D is equal to 0.75 and 1.625. Numerical runs are achieved for the nozzle

diameter equal to 0.4 mm and a printing velocity V equal to 1 m min−1. The Reynolds,

capillary, Péclet and Weissenberg numbers are summarised in Table 3. The dimensionless

numbers show that inertia and surface tension have a weak effect.

Figure 7 shows the polymer spreading at three successive time steps with g/D equal

to 3/4 and U/V equal to 3. Blue and red colours correspond to the surrounding air

and the polymer phases, respectively. The interface position corresponds to the zero-

value of the level set function. The first column of Figure 7 represents the view in

the symmetric plane, (x, 0, z) while the second column is the view in the (0, y, z) plane

perpendicular to the symmetric plane. The well captured interface results from the
12



(a) t=5.13× 10−3 s

(b) t=1.863× 10−2 s

(c) t=5.643× 10−2 s

Figure 7: Snapshots of the polymer spreading at the exit of the nozzle at the first steps of the deposition
for g/D=3/4 and U/V=3. The first column corresponds to the view in the symmetric plane and the
second column, to the view in the transversal (0, y, z) plane.

refined mesh adaptation around the interface performed at each time step. The numerical

computation thus allows to study the behaviour of the interface with high accuracy.

The first considered time step corresponds to the contact of the polymer with the sub-

strate. The polymer exhibits a quasi-axisymmetric shape. A slight die swell is observed

even if the viscoelastic behaviour is not accounted for. This corresponds to the die swell

of a purely viscous fluid without gravity and inertia effects [21]. For t=1.863× 10−2 s,

the polymer is drawn by the substrate. Due to a large value of U/V , a slight spreading of

the polymer is observed upstream to the deposition. The polymer spreads transversely.

When t=5.643× 10−2 s, the polymer is in contact with the nozzle and substrate. At the

same time, the polymer spreading upstream is stabilised. The squeezing of the poly-
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Figure 8: Geometry of the polymer strand for g/D=0.75, U/V=3 for a nozzle diameter equal to 0.4 mm
and V=1 m min−1 in the steady-state regime.

mer is important for this set of working conditions. However, the polymer spreading

upstream does not flow beyond the edge of printing head. In that case, it could disrupt

the displacement of the printer head.

For this first set of working conditions, Figure 8 shows the shape of the strand in

the three planes (x, y), (x, z) and (y, z) when the steady-state regime is reached. This

state is established when the morphology of the filament does not change with time.

The steady-state regime is reached for t equal to 0.388 s. This time corresponds to

a deposition length of around 6.5 mm. The polymer remains in contact with the tip

of the printing head. It spreads radially from the extruder axis over a radius equal

approximately to 0.5 mm. These pictures agree with the approach developed in [8]. The

analytical solution of the length L given in Equation (3) is compared to the simulation

result. The analytical solution gives L equal to 0.37 mm while L is equal to 0.39 mm in

the numerical computation. The prediction shows 6 % deviation for g/D=0.75. Far from

the extruder, the strand spreads wider than the exterior size of the tip of the nozzle. The

shape of the strand is very similar to an oblong shape with a height approximately equal

to the gap g.

The successive deposition steps when g/D is equal to 1.625 are shown in Figure 9.

As in the previous case, the first time step is chosen when the polymer is just touching

the substrate. A slight die swell is also observed. At t=4.036× 10−2 s, Figure 9(b) shows

that the polymer is already drawn by the substrate. The contact area is very small as it

is clearly seen in the perpendicular view to the symmetric plane. For t=8.716× 10−2 s,

the contact area stays also moderate. As expected, when g/D is larger than one, the

polymer is not confined between the substrate and the nozzle. The polymer does not
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touch the tip of the nozzle.

Figure 10 depicts the steady-state regime of the strand. This regime is reached after

0.647 s. This corresponds to a deposition of 1 cm. The transverse spreading is weak

because the extruded polymer is not restrained by the nozzle anymore. The same trend

is observable upstream, at the front of the nozzle.

In the steady-state regime, the strand shape is close to a half disk around the nozzle

and then reaches a uniform shape downstream. The morphology of this half disk depends

on g/D. The transition between the two shapes occurs on a longer distance when the

g/D ratio increases. Anyway, in each printing situation, a stabilised deposit shape is

achieved within few millimetres.

As already shown in the experimental analysis, the gap distance has an impact on the

dimensions and geometry of the deposited strand. For a given printing ratio U/V , the

shape is more oblong when the gap is smaller than the nozzle diameter. In the opposite

case, the shape is more ellipsoidal. When g/D is equal to 0.75, the polymer is in contact

with the nozzle wall. The resulting strand shape has a more planar upper surface. As

seen in Figure 8, the strand maximum height is very close to the gap, i.e. 0.3 mm, and

the width is 1.33 mm. On the other hand, for g/D larger than one, the gap does not

impact so much the strand shape. As shown in Figure 10, H is equal to 0.49 mm and

W=0.9 mm.

3.2. Velocity and pressure fields

Figures 11 and 12 represent the x component of the velocity field in the symmetric

plane for g/D equal to 0.75 and 1.625 respectively. Once again, the two situations are

very different. When the gap is lower than the nozzle diameter, Figure 11, the maximum

of the velocity is observed close to the tip of the nozzle. Apart from the nozzle exit, the

velocity is completely uniform with a velocity magnitude equal to the printing velocity.

When g/D is equal to 1.625, Figure 12, the x component of the velocity field behaves

differently. Apart from the free surface on the left side of the nozzle, the velocity becomes

quite immediately uniform close to the nozzle exit and equal to the printing velocity. For

both cases depicted here, the polymer undergoes a shear flow only close to the nozzle exit.

When the polymer is out this area, it is just drawn by the wall with a uniform velocity.

With low shear rate and a temperature decreasing, the viscosity of the polymer increases

strongly leading to a vanishing rate of strain tensor. In other words, the polymer behaves

like a solid.

Figure 13 depicts the vertical profile of the x component of the velocity field for both

cases at a particular downstream location x=0.35 mm just before the periphery of the

nozzle (see in Figures 11 and 12). The black solid and dashed lines are the numerical

solution for g/D ratio equal to 0.75 and 1.625, respectively. In the situation of a small
15



(a) t=1.696× 10−2 s

(b) t=4.036× 10−2 s

(c) t=8.716× 10−2 s

Figure 9: Snapshots of the polymer spreading at the exit of the nozzle at the first steps of the deposition
for g/D=1.625 and U/V=3. The first column corresponds to the view in the symmetric plane and the
second column, the transversal view cutting the extruder in two equal parts.
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Figure 10: Geometry of the polymer strand for g/D=1.625, U/V=3 for a nozzle diameter equal to
0.4 mm and V=1 m min−1.

Figure 11: Velocity field in the (x, z) plane for g/D=0.75.

Figure 12: Velocity field in the (x, z) plane for g/D=1.625.
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Figure 13: Velocity profile ux at x=0.35 mm for both gaps.

gap, i.e. g/D=0.75, the polymer is in contact with the substrate and the nozzle. For a

purely viscous fluid, the velocity is the sum of a shear flow induced by the displacement

of the nozzle and the injection of the polymer between the two parallel horizontal planes.

Notice that at this particular location, the shear rate is equal to zero on the substrate.

In the case of large gap, the extrusion velocity is too low to spread the polymer radi-

ally. The presence of the free surface leads to a vanishing shear stress. The x component

of the velocity is a quasi-plug flow profile. It decreases at the upper free surface due to

reorientation of the strand. This situation is close to the imposed kinematics of McIlroy

and Olmsted [22]. When g/D is less than one, the velocity profile is more complex than

the one used in the work of McIlroy and Olmsted [22].

The pressure field is depicted in the (x, y) plane in Figure 14 for both gaps investi-

gated in this section. When the ratio g/D is equal to 0.75, the pressure field is radially

distributed around the axis of the extruder. This means that the flow due to the ex-

trusion prevails. For g/D equal to 1.625, the pressure field is strongly different. The

amplitude is 8.8 times smaller than the case with a g/D ratio equal to 0.75. The motion

of the substrate drives the pressure field giving an asymmetric pressure distribution.

When the g/D ratio decreases, the pressure on the substrate increases due to the

contact of the nozzle with the polymer. Increasing the pressure will favour welding [23]

and decrease porosity. When g/D=1.625, the contact of the nozzle with the polymer is

strongly reduced in the detriment of welding and porosity removal.

3.3. Thermal cooling

The adhesion quality is influenced by the thermal cooling. Heat transfer during the

filament deposition depends on the cooling with the surrounding air and the contact
18



(a) g/D=0.75

(b) g/D=1.625

Figure 14: Pressure field in the (x, y) plane for (a) g/D=0.75 and (b) g/D=1.625.

with the substrate. In the single strand printing situation considered here, the interface

temperature between the metallic substrate and the deposited strand will be near the

temperature of the substrate due to the large effusivity of the metallic substrate. In

the case of the deposition of successive stands, the interface temperature will be the

arithmetic average between the previously and the newly deposited strands. In Figure 15,

the temperature field is shown for g/D equal to 0.75 in the symmetric plane and in

the cross section localised at x=3.23 mm from the nozzle exit. While the temperature

is supposed uniform at the tip of the nozzle, the contact with the substrate leads to

important cooling. The strand undergoes an asymmetrical cooling from the bottom to

the top. This kind of cooling has been already observed by Ravoori et al. [24] with an

infrared video camera. The cooling seen by Ravoori et al. [24] is more important that in

our case. Nevertheless, the velocity ratio U/V is not specified in [24].

The temperature field in the strand cross section decreases progressively in the x

direction resulting from the balance between the advection and the thermal conduction

through the strand. Figure 16 provides the temperature field in the symmetric plane

(x, z) and in a cross section localised at x=3.23 mm for g/D equal to 1.625. A sharp

temperature decrease is observed within a few millimetres. This trend is more pronounced

when the gap decreases.
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(a) (x, z) plane
(b) (y, z) plane at x=3.23 mm

Figure 15: Temperature field for g/D equal to 0.75 (a) in the symmetric plane (x, z) and (b) in a cross
section localised at x=3.23 mm from the exit of the nozzle.

(a) (x, z) plane
(b) (y, z) plane at x=3.23 mm

Figure 16: Temperature field for g/D equal to 1.625 (a) in the symmetric plane (x, z) and (b) in a cross
section localised at x=3.23 mm from the exit of the nozzle.

After a certain distance from the nozzle exit, the temperature gradient is mainly

present along the z axis. The maximum temperature in the strand is lower for the

strand with the lowest height. The strand cooling seems mainly driven by conduction

with the substrate.

To investigate the thermal behaviour along the x axis, numerical computations have

been done for other working conditions changing the gap and the velocity ratio. The

temperature profile is taken in the middle of the strand. Figure 17a presents the be-

haviour of θ as a function of x. After a short area localised under the nozzle where the

temperature is quasi equal to one, a cooling is observed along the longitudinal axis. No

clear trend raises as a function of the working conditions of the printer.

The cooling of the strand has been analysed by Bellehumeur et al. [20] accounting for

the heat transfer between the polymer and the surrounding air and the substrate. This

model depends on the perimeter P and the area of the cross section, A. Here the original

model of Bellehumeur et al. [20] is improved by considering the thermal transfer between

the polymer and the surrounding air and the polymer and the substrate separately. Using

a 1-D description of the deposited strand, the average temperature over a cross section,

θ̄, obeys to the simple ordinary differential equation

d2θ̄

dx2
− Pe

dθ̄

dx
− P
A

[χair Biair +(1− χair) Bisub] θ̄ = −P
A

(1− χair) Bisub θsub, (16)

with Pe the Péclet number already defined by (15), χair the ratio of the perimeter in

contact only with surrounding air to the total perimeter and θsub is the reduced tem-

perature of the substrate. The two dimensionless numbers, Biair, and Bisub are the Biot
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Figure 17: Temperature behaviour in the middle of the strand as a function of x in (a) and βx in (b).

numbers defined by

Biair =
hairg

kp
, (17)

Bisub =
hsubg

kp
, (18)

with hair and the hsub air/polymer and polymer/substrate heat transfer coefficients,

respectively. Equation (16) is written under dimensionless form with the characteristic

scales introduced in the numerical section.

The integration of (16) gives the following solution

θ̄ =

[
1− (1− χair) Bisub θsub

χair Biair +(1− χair) Bisub

]
e−βx +

(1− χair) Bisub θsub

χair Biair +(1− χair) Bisub
, (19)

for x > 0 and β given by

β =
Pe

2

(√
1 +

4P
APe2 [χair Biair +(1− χair) Bisub]− 1

)
. (20)

Equation (19) suggests that the temperature should be scaled as a function of βx.

Figure 17b represents the behaviour of the temperature as a function of βx. A general

curve clearly appears under this form. The various values of β have been determined

using the data of the Pe, P, A, χair, Biair and Bisub given in Table 4. To obtain the single

curve, χair and the Biot numbers have been estimated. To determine χair, the strand

shape is assumed oblong. From the correlations found in the previous section, it is easy to

estimate χair. According to Agassant et al. [25, page 239], the heat transfer due to natural
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Table 4: Values of Pe, P, A, χair, Biair and Bisub for the four numerical cases used to determine β, eq.
(20).

Case Pe P A χair Biair Bisub
g
D=0.75, U

V =3 28.857 6.210 4.023 0.685 4.28× 10−2 4
g
D=1.25, U

V =2 48.095 2.641 0.961 0.817 7.142× 10−2 5.5
g
D=1.25, U

V =5 48.095 4.494 2.442 0.783 7.142× 10−2 5
g
D=1.625, U

V =3 62.523 2.490 0.852 0.871 9.286× 10−2 8

convection for an horizontal cylinder is around 16 Wm−2K−1. The contribution due to

thermal radiation is around 13 Wm−2K−1 [25, page 246]. Therefore, the heat transfer

coefficient between the surrounding air and the polymer is set equal to 30 Wm−2K−1 as

already used by Thomas and Rodŕıguez [26] and by Bellehumeur et al. [20]. The Biot

number of the heat transfer between the polymer and the substrate has been adapted

to have a good agreement between the numerical solution and the predicted solution

given by (19). The respective values of Bisub are gathered in Table 4. As expected the

heat transfer between the polymer and substrate is more efficient than the heat transfer

between the polymer and surrounding air. From these data, heat transfer coefficients

between the polymer and the substrate are around 2× 103 Wm−2K−1.

Even if the comparison to this simple model is done by taking a temperature in the

middle of the strand, the agreement with the theory is acceptable. This simple model

pinpoints that the perimeter and the area of the cross section are the relevant parameters

to describe the thermal cooling of the deposited strand. With the approximate relations

determining the width and height of a strand, it is possible to implement a simple model

to study the thermal cooling as developed for instance by Costa et al. [27]. When the

substrate is substituted by a previously deposited layer the heat transfer will significantly

decrease. The macroscopic model used by Xu et al. [15] showed lower heat transfer

coefficients than the values indicated here.

4. Comparison between numerical predictions of strand dimensions and ex-

periments

The computed strand height and width are compared to experimental measurements.

The printing velocity V is equal to 1 m min−1. The nozzle diameter is equal to 0.4 mm.

As previously, the substrate, the nozzle and the air temperatures are set to 94, 230 and

40 ◦C. The comparison is achieved for various U/V ratios and two ratios g/D equal to

1.25 and 1.625.

In Figure 18, the strand shape obtained numerically is compared with the experi-

mental one printed at U/V equal to 2 and g/D equal to 1.625. The cross section of the
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(a) Experiment
(b) Num. simul.

Figure 18: Experimental (a) and numerical (b) cross sections obtained for U/V equal to 2 and g/D equal
to 1.625.

(a) Experiment
(b) Num. simul.

Figure 19: Experimental (a) and numerical (b) cross sections obtained for U/V equal to 4 and g/D equal
to 1.625.

deposited filament presents an asymmetric cross section. While the part in contact with

the substrate is very similar to an oblong shape, the opposite part is more similar to the

elliptic shape. This asymmetry is numerically very well captured. The numerical result

overestimates both the width and the height of the strand cross section.

An equivalent comparison is done in Figure 19 for U/V equal to 4 and the same g/D

ratio. The strand is wider and higher for U/V equal to 4 than for U/V equal to 2. This

expected result is in agreement with experiments analysed in § 2.3. The asymmetric

cross section and the dimensions of the strand are very well reproduced numerically.

Figure 20a presents the behaviour of W/D as a function of
√
α with α defined by

equation (5). Both experimental measurements and numerical computations have been

collected. These data are obtained for g/D equal to 1.25 in blue colour and for 1.625 in red

colour. The average deviation between the simulated strand width and the experimental

measurements is around 5 % for both gaps. The black solid line corresponds to the

approximate solution given by equation (6). It provides a very relevant approximation.
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Figure 20: (a) W/D vs.
√
α and (b) H/g vs. α obtained numerically and experimentally for g/D equal

to 1.25 and 1.625.

Figure 20b depicts H/g as a function of α for the same series of data. The deviation

ranges from 1 to 8 % with an average deviation of 5.9 %. The black solid line is the fitted

function given by equation (10). It is less relevant than the width prediction.

The numerical method set in this work reproduces the main physical features observed

experimentally. However, the fluid mechanics has been simplified since the viscoelasticity

behaviour has not been taken into account. The thermal conditions are also idealised.

5. Synthesis and perspectives

This paper provides extensive measurements of the strand dimensions obtained with

the material extrusion process. The parameters of highest influence were investigated

including (i) the extrusion velocity U , (ii) printing velocity V , (iii) gap between the

substrate and the tip of the nozzle g, (iv) nozzle diameter D. In a previous paper [8], it

is shown that the width of the deposited strand is a function of α = (D/g)(U/V ) using a

simplified analytical model. In this paper, the W/D and H/g ratios are gathered within

single curves function of this parameter α.

A numerical model of the deposition process is developed assuming a temperature

dependent purely viscous model. The computed widths and heights of the deposited

strand agree well with the experimental measurements. The computations performed

for two g/D ratios and a wide range of U/V ratios show a good agreement (less than

6% difference) with the corresponding experiments. This confirms the relevance of the

parameter α to define the width and the height of the deposited strand as a function of

the printing parameters.

Moreover, the numerical model provides interesting complementary results, as for
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example the precise shape of the deposited strand. The applied pressure (or stress)

on the substrate as well as the temperature field between the printing head and the

substrate are leading parameters for the welding capacities with the previous deposited

strands. The thermal cooling after the deposition pinpoints that a unified process can

be established. This analysis underlines the importance to know the perimeter and the

area of the strand.

This paper opens the route for three different perspectives in FFF additive manu-

facturing modelling: (i) Confront the numerical model to a wider range of experimental

strand measurements, especially for low g/D ratios which showed a singular behaviour;

(ii) Provide a global computation of the FFF process, including the melting process in the

liquefier. As underlined in a previous paper [14], a marked radial temperature gradient

at the end of the liquefier may be observed at high extrusion velocity. This will impact

the succeeding printing process; (iii) Introduce viscoelastic constitutive equations which

will essentially impact die swelling at the nozzle exit. This should induce confinement

and pressure development between the printing head and the substrate, even for gap

dimensions larger than the nozzle diameter.
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Upper-case roman

A Area of the cross section of a strand m2

Biair Biot number for the heat transfer with air –

Bisub Biot number for the heat transfer with substrate –

Ca Capillary number –

Cp Specific heat capacity J kg−1 K−1

Cpp Specific heat capacity of the polymer J kg−1 K−1

D Diameter of the nozzle m

E Thickness of the truncation in the filtered level-set function m

Ea Activation energy J mol−1

H Heaviside function –

H Height of a unique strand m

L Length of front spreading of the polymer m

P Pressure Pa

P Perimeter of a strand cross section m

Pe Péclet number –

R Ideal gas constant J mol−1 K−1

Re Reynolds number –

Rin Radius of the inlet cylinder of the nozzle m

Rn External radius of the nozzle m

T Temperature K, ◦C

Tair Surrounding air temperature K, ◦C

Text Temperature of the extruder K, ◦C

Tg Glass transition temperature K, ◦C

Tref Reference temperature of the shift factor K

Tsub Temperature of the substrate K, ◦C

U Extrusion velocity m s−1

Uin Inlet average velocity at the inlet of the extruder m s−1

V Printing velocity m s−1

W Width of a unique strand m

Wi Weissenberg number –

Lower-case roman

a Yasuda coefficient –

aT Shift factor –

dΓ Euclidean distance from the interface Γ m

g Distance between the substrate and the tip of the nozzle m

hair Air/polymer heat transfer coefficient Wm−2K−1
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hsub Polymer/substrate heat transfer coefficient Wm−2K−1

k Thermal conductivity W m−1 K−1

kp Thermal conductivity of the polymer W m−1 K−1

m Shear thinning index –

n Outer unit normal –

nΓ Unit normal at the interface –

r Radial coordinate in the nozzle m

t Time s

u Velocity m s−1

x Cartesian coordinate m

x Longitudinal Cartesian coordinate m

y Transversal Cartesian coordinate m

z Vertical Cartesian coordinate m

Upper-case greek

Γ Interface between the two phases –

Ω Computational space domain –

∂Ωnoz Nozzle surface of computational space domain –

∂Ωsub Substrate surface of computational space domain –

Ωg Computational space domain of gas –

∂Ωin
g Inlet surface of gas –

∂Ωout
g Outlet surface of gas –

Ωp Computational space domain of polymer –

Lower-case greek

α Dimensionless group equal to DU/(gV ) –

β Dimensionless coefficient –

γ Surface tension N m−1

γ̇ Shear rate s−1

δ Dirac function m−1

ε Numerical coefficient m

ε̇ Rate-of-strain tensor s−1

η Dynamical viscosity Pa s

η0 Dynamical viscosity at zero shear rate Pa s

θ Dimensionless temperature –

θ̄ Cross sectional average temperature –

θsub Dimensionless temperature of the substrate –

κΓ Mean curvature m−1

λ Relaxation time s
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µ Numerical parameter of the Hamilton-Jacobi equation –

ρ Density kg/m3

ρp Density of the polymer kg/m3

ϕ Level-set function m

ϕ̃ Filtered level-set function m

χair fraction of the perimeter in contact with surrounding air –

Appendix B. Numerical computation of a filament deposition

Appendix B.1. Governing equations

The numerical computation focuses on the extrusion and deposition of a single strand.

Only the inside tip of the nozzle is considered. As displayed in Figure 6, it is composed of

the end of the liquefier, the convergent region and the final capillary region of the nozzle.

The problem is symmetric along the perpendicular plane of the substrate, cutting the

printer in two parts. Therefore, only one half of the domain is considered. The nozzle

solid domain and the substrate are not included in the numerical domain and only the

polymer and air domains are considered in the computation.

An open space domain Ω is composed of two open subdomains, Ωp(t) where the

polymer is present and Ωg(t) corresponding to the surrounding air. Figure 6 depicts a

cross section in the symmetric plane x−z of the domain in which Ωp(t) and Ωg(t) are

represented in the initial conditions. The reference frame is attached to the extruder

with x axis directed downstream, z along the axis of the extruder and y perpendicular to

the symmetry plane. The wall of the substrate, ∂Ωsub, slides in the opposite direction of

the “real” motion of the extruder at constant velocity. This change of Galilean reference

frame needs to consider that the air phase enters in the domain with a velocity equal to

the printing velocity through the boundary ∂Ωin
g . The domain is extended over a distance

5g upstream and 15g downstream of the extruder. Transversely, the domain width is set

equal to 5g.

The interface between the two phases is simply given by Γ(t) = ∂Ω̄p(t)∩ ∂Ω̄g(t) [28].

To follow the two phases and the interface Γ(t), the two-phase fluid dynamics is described

as a single-fluid representation [29]. Each phase is flagged by a characteristic function.

To determine these functions, the position of the interface between the two phases is

used by taking the level-set (distance) function defined as follows [17]

ϕ(x, t) =


dΓ(x) ∀ x ∈ Ωp(t),

0 ∀ x ∈ Γ(t),

−dΓ(x) ∀ x ∈ Ωg(t),

(B.1)
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in which dΓ(x) is the Euclidean distance from the interface Γ(t). Mathematically, the

characteristic function for the polymer is H(ϕ(x, t)) corresponding to the generalised

Heaviside function. The complementary function 1−H(ϕ(x, t)) corresponds to the char-

acteristic function of the air subdomain. In the single-fluid representation, a generic

function ψ is then written as follows

ψ = H(ϕ(x, t))ψp + [1−H(ϕ(x, t))]ψg, (B.2)

with ψp and ψg the properties in subdomains Ωp and Ωg respectively.

The governing equations are written under dimensionless form. Spatial coordinates

are normalised by the gap g between the substrate and the nozzle. The printing velocity

V is used to normalise the velocity field and g/V for time. The density, thermal conduc-

tivity, specific heat capacity and dynamic viscosity are normalised by ρp, kp, Cpp and η0,

respectively. Since temperature ranges from the surrounding air temperature Tair and

the extrusion temperature Text, it is normalised as follows

θ =
T − Tair

Text − Tair
. (B.3)

Using the general method presented in [29], the governing equations are the following:

∇ · u = 0, (B.4)

Re ρ
Du

Dt
= −∇P + ∇ · [2η(θ, γ̇)ε̇] +

1

Ca
κΓδ(ϕ)‖∇ϕ‖nΓ, (B.5)

ρCp
Dθ

Dt
=

1

Pe
∇ · (k∇θ) , (B.6)

with

ε̇ =
1

2

(
∇u + ∇tu

)
, (B.7)

γ̇ =
√

2ε̇ : ε̇. (B.8)

Equation (B.4) means that the volume is conserved. Both polymer and air are then

assumed incompressible. Moreover, no mass transfer is considered between the two fluids.

In the momentum equation, (B.5), gravity forces are neglected since the characteristic

scales are small. The last source term in the right-hand side of (B.5) corresponds to the

surface tension force for which δ(ϕ) is the Dirac function of ϕ. The unit normal at the
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interface Γ(t) and the mean curvature are defined by

nΓ =
∇ϕ

‖∇ϕ‖
, (B.9)

κΓ = −∇ · nΓ. (B.10)

In the energy equation the viscous dissipation has been neglected.

The Reynolds number, Re, the capillary number, Ca, and the Péclet number, Pe

have been already defined in § 3. The dynamic viscosity of the molten polymer fitted by

Carreau-Yasuda law takes the following dimensionless form

ηp(γ̇, θ) =
aT

[1 + (Wi aT γ̇)
a
]
(1−m)/a

, (B.11)

with Wi the Weissenberg number defined by equation (15).

In absence of mass transfer, the interface Γ(t) is a material surface moving at the

fluid velocity meaning that the transport of the interface is simply given by the equation

∂ϕ

∂t
+ u ·∇ϕ = 0. (B.12)

Nevertheless, as it is well known, the transport of ϕ using the previous equation leads to

the loss of the Eikonal property of ϕ, i.e. ‖∇ϕ‖ 6= 1 [18]. A reinitialisation of the level-

set function is then needed after the transport step. Sethian and Smereka [18] reviewed

the various techniques used to do the reinitialisation. Here, the method proposed by

Ville et al. [30] has been selected. The transport and reinitialisation steps are achieved

in a unique transport equation with an additional source term in the Hamilton-Jacobi

equation given by [30]

∂ϕ

∂t
+ u ·∇ϕ = sign(ϕ)µ (1− ||∇ϕ||) , (B.13)

with sign(ϕ) the sign function of ϕ and µ a numerical parameter chosen as a function of

the mesh size and the time step. Furthermore, a filtered level-set function is defined as

follows

ϕ̃ = E tanh
(ϕ
E

)
, (B.14)

in which E is the thickness of the truncation. With this definition, it is easy to see that

‖∇ϕ̃‖ = 1−
(
ϕ̃

E

)2

, (B.15)

meaning that close to the interface the Eikonal property is fulfilled.
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As proposed by Bonito et al. [31], the combination of (B.13) and (B.15) gives the

self-reinitialisation level set equation

∂ϕ̃

∂t
+ u ·∇ϕ̃ = µsign(ϕ̃)

[
1−

(
ϕ̃

E

)2

− ‖∇ϕ̃‖

]
, (B.16)

which is used in the numerical computation to transport ϕ̃.

Appendix B.2. Boundary conditions

The nozzle geometry corresponds to the E3D-V6 nozzle with a final capillary diameter

of D equal to 0.4 mm (see ref. [16] for more details about the geometry E3D-V6 extruder).

It forms the boundary ∂Ωnoz of the computation domain. The bottom surface of the

domain ∂Ωsub is the substrate. The other boundaries (∂Ω̄g, ∂Ωin
g , ∂Ωout) are in contact

with air.

In the initial state, the interior of the nozzle is full of polymer and immersed in the

computation domain. This immersed domain Ωp (in orange in Figure 6) is then taken

as the initial polymer domain. The rest of the computation domain Ωg is considered as

surrounding air.

As already mentioned above, the nozzle is immobile and a constant velocity is applied

on the substrate in the x direction. A no-slip condition is considered on the substrate

and nozzle boundaries. At the inlet polymer boundary ∂Ωp, a Poiseuille velocity profile

is imposed such that:

uz(r) = −2Uin

[
1−

(
r

Rin

)2
]
, (B.17)

with Uin the inlet average velocity given by

Uin = U

(
D

2Rin

)2

, (B.18)

with Rin the radius of the inlet cylinder and r the radius coordinate equal to
√
x2 + y2.

As the nozzle moves in the x− direction, a convective flow of air equal to the printing

velocity is applied on the boundary ∂Ωin
g . No condition is applied on the ∂Ωout. On the

other air boundaries, the impermeable condition is applied meaning that u · n = 0 with

n the outer unit normal.

In the initial state, the air domain Ωg and the polymer domain Ωp have an imposed

temperature θ = 0 and θ = 1, respectively. The inlet polymer has an imposed tem-

perature of θ = 1. In the nozzle boundary ∂Ωnoz, Dirichlet boundary condition is used

such as θ = 1. In upstream air boundary ∂Ωin
g has an imposed temperature θ = 0. The
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substrate boundary ∂Ωsub has an imposed temperature equal to

θsub =
Tsub − Tair

Text − Tair
. (B.19)

The temperature jumps at the intersection ∂Ωin
g ∩∂Ωsub leads to computation instabilities.

To ensure the continuity of the boundary condition at this edge, the temperature is set

equal to

θ = θsub

[
1− exp

(
−
|x− x∂Ωin

g ∩∂Ωsub
|

ε

)]
, (B.20)

in which ε is a numerical coefficient controlling how fast the temperature changes from

0 to θsub.

The filtered level set must be imposed in boundaries where the fluid goes inside the

domain. The boundary conditions are then

ϕ̃ = −E, ∀x ∈ ∂Ωin
g , (B.21)

ϕ̃ = E, ∀x ∈ ∂Ωp. (B.22)

For the rest of boundaries, the homogeneous Neumann condition is applied. At the

substrate boundary, ∂Ωsub, where a triple line is present (substrate/air/polymer), the

contact angle is then equal to π/2.

All boundary conditions for the three equations are summarised in Table B.6.

Table B.6: Boundary conditions of fluid mechanics, heat transfer and level set equations in the boundaries
of the computational domain depicted in Figure 6.

Boundary Fluid mech. Heat transfer Level set

∂Ωnoz u = 0 θ = 1 ∂ϕ̃
∂n = 0

∂Ω̄g/∂Ωin
g ∪ ∂Ωout u · n = 0 ∂θ

∂n = 0 ∂ϕ̃
∂n = 0

∂Ωin
g u = ex θ = 0 ϕ̃ = −E

∂Ωsub u = ex Eq. (B.20) ∂ϕ̃
∂n = 0

∂Ωp u = −2Uin

[
1−

(
r
Rin

)2
]
ez θ = 1 ϕ̃ = E

Appendix B.3. Numerical method

Numerical computations are achieved with our own C++ CimLib library. To solve the

system of equations (B.4-B.6) and (B.16), a time-marching method is used. To deter-

mine the temporal derivatives of u, θ and ϕ̃, a finite-difference method at the first order
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is employed. To ensure the stability of the scheme, an implicit Euler scheme is imple-

mented. The spatial discretisation is achieved by a finite-element method. The domain

is discretised with linear tetrahedron elements. For Navier-Stokes equations, the discrete

inf−sup condition is satisfied by using the element P1−bubble/P1 [32]. The temperature

and level-set transport equations are stabilised by a Streamline Upwind/Petrov-Galerkin

method [33]. The polymer/air interface must be defined with the most accuracy. An

anisotropic adaptive meshing is achieved. The filtered level set field is taken as criterion.

The sharp gradients are captured using an a posteriori error estimation based on the

length distribution tensor approach and the associated edge based error estimator (see

[34], for more details). The mesh adaptation is performed after each time step.

Initially, the polymer domain is immersed in the computation domain by incorporat-

ing a mesh fitting with the geometry of the nozzle. A level set function is then created

based on the immersed domain. The temperature is then imposed in the polymer and

air domains based on the level set function. The viscosity of the polymer at rest is then

computed using the temperature dependence.

At each time step, the polymer viscosity is computed based on temperature and rate

of strain fields of the previous time step. The generalized Navier-Stokes equations are

then solved with the material properties corresponding to their respective domains. The

attribution is based on the level set function computed at the previous increment using

a regularised Heaviside function. The heat transfer equation is then solved. Finally, the

level set function is transported based on the computed velocity field. Finally, the mesh

adaptation is done. The computation stops when the geometry of the deposited strand

is stabilised.
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