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Abstract— We propose an observer design method for hybrid
systems with linear maps and known jump times based on
decomposing the state into parts exhibiting different kinds
of observability properties. Using a series of transformations
depending on the time elapsed since the previous jump, the state
may be decomposed into up to three parts, where the first one is
instantaneously observable during flows from the flow output,
the second one detectable at jumps from the jump output thanks
to the combination of flows and jumps, and the remaining part
naturally detectable at jumps still thanks to this combination
of flows and jumps but implicitly from the flow output. An
observer is then designed to estimate each part, relying on
a flow-based Kalman-like observer exploiting the flow output
for the first part, a jump-based observer exploiting the jump
output for the second, and a jump-based observer exploiting
a fictitious output for the third. Global exponential stability of
the estimation error is proven using Lyapunov analysis.

I. INTRODUCTION

Hybrid dynamical systems are widely studied and have a
lot of applications, e.g., impulsive systems, walking robots,
biology, and so on [1]. However, the observer design problem
for this class of systems is still largely unsolved mainly
because the time domain of each hybrid solution typically
depends on its initial condition and is thus unknown to the
observer. Hence, the time domain of the system and observer
solutions typically differ, making both design and analysis of
convergence challenging [2]. Even in the less complex case
where the system jump times, namely the times at which
discrete events appear, are known or detected [3], [4], e.g.,
impulsive systems [5], [6], [7], [8], [9] or continuous-time
systems with sampled measurements [10], [11], [12], [13],
existing results typically assume either: 1) Lyapunov/LMI-
based sufficient conditions, see e.g., [3] or [4, Section 3],
but without constructive observability-based criteria to check
their solvability; or, 2) Observability of the full state during
flows from the flow output only, exploiting continuous-time
high-gain observers and persistence of flows, see e.g., [4,
Section 4]; or, 3) Observability of the full state from the jump
output only thanks to the combination of flows and jumps,
exploiting discrete-time observers on an equivalent discrete-
time system sampled at the jumps and persistence of jumps,
see e.g., [4, Section 5] or [7], [12], [13]; or, 4) For switched
systems, observability gained by accumulating information
from individual non-observable subsystems under persistent
switching [8], [9].
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Paris, France {gia-quoc-bao.tran,pauline.bernard,
florent.di meglio}@minesparis.psl.eu

2CASY-DEI, University of Bologna, Bologna 40123, Italy
lorenzo.marconi@unibo.it

However, in some hybrid systems, state components may
exhibit different kinds of observability properties, associated
with the flow and/or jump output or even hidden inside the
flow-jump coupling. It has been suggested from [14] that
for linear time-varying systems, components with different
observability properties can be separated from each other
using decomposition. In the context of output regulation, [15]
extends these ideas to hybrid systems with linear maps and
periodic jumps with output during flows only. Indeed, it is
seen that a part of the dynamics is instantaneously observable
during flows from the flow output, while a part of the non-
observable dynamics becomes visible in the observable states
at jumps. The rest of the dynamics, called the invisible
dynamics, may be discarded for internal model design. This
idea, however, is still limited in [15] to the case of periodic
jumps and flow output only.

In this paper, we extend these ideas in the context of
observer design for hybrid systems with linear maps and
known jump times. Unlike in [15], jumps are typically not
periodic and the full state needs to be reconstructed, and for
that, one may rely on outputs available both during flows and
at jumps, thus exploiting the full potential of hybrid systems.

Our main contribution is a series of linear transformations
depending on the time elapsed since the previous jump that
effectively decomposes the state into (up to) three parts with
different observability properties: the first one is instanta-
neously observable during flows from the flow output, the
second one is detectable at jumps from the jump output
thanks to the combination of flows and jumps, and finally, the
remaining part is implicitly detectable at jumps from the flow
output. This decomposition allows us to explicitly construct
an observer estimating each mentioned part of the state in the
new coordinates depending on their observability properties,
namely an arbitrarily fast flow-based Kalman-like observer
exploiting the flow output for the first part, a jump-based
observer exploiting the jump output for the second, and a
jump-based observer exploiting a fictitious hidden output for
the third. Using Lyapunov analysis, a high-gain-like result
is obtained, where the global exponential stability (GES) of
the estimation error is achieved if the flow-based Kalman-
like observer is pushed sufficiently fast.

A. Notations

Let R (resp. N) denote the set of real numbers (resp.
natural numbers, i.e., {0, 1, 2, . . .}). Let R≥0 = [0,+∞)
while R>0 = (0,+∞) and N>0 = N\{0}. Let Rm×n

be the set of real (m × n)-dimensional matrices, while
Sm×n
>0 denotes the set of (symmetric) positive definite real



(m × n)-dimensional matrices. Let ∥z∥ be the Euclidean
norm of the vector z. For a solution (t, j) 7→ x(t, j) (see
[1, Definition 2.6]) of a hybrid system, we denote domx
its domain, domt x (resp. domj x) the domain’s projection
on the time (resp. jump) component, and for j ∈ N, tj(x)
the only time defined by (tj , j) ∈ domx and (tj , j − 1) ∈
domx. A solution x is complete if domx is unbounded
and Zeno if it is complete and sup domt x < +∞. Let
diag(λ1, λ2, . . . , λn) be the diagonal matrix operator and

ℜ(φ) :=
(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
be the rotation matrix. Last,

⋆ in the matrix inequalities denotes the symmetric block.

II. PROBLEM FORMULATION

Consider a hybrid dynamical system with linear maps

H
{

ẋ= Fx x ∈ C yc = Hcx
x+ = Jx x ∈ D yd = Hdx

(1)

where x ∈ Rn is the state, yc ∈ Rpc and yd ∈ Rpd are the
outputs known during the intervals of flow and at the jump
times, and C and D are the flow and jump sets respectively.

Remark 1: The design of this paper still holds if the
flow/jump dynamics contain extra known terms and if the
flow/jump sets depend on a known exogenous input, which
is neglected here for brevity.

The goal of this paper is to design an asymptotic observer
for (1), assuming its jump times are known. Because in
practice we may be interested in estimating only certain
trajectories of “physical interest”, we denote in the following
X0 a set containing the initial conditions of the trajectories
to be estimated. Following [4], our design only requires us
to have an idea of the possible duration of flow intervals
between successive jumps in the trajectories of interest as
defined next.

Definition 1: Let SH(X0) denote the set of maximal so-
lutions of H initialized in X0. For a closed subset I of R≥0,
we say that solutions have flow lengths within I, if, for any
x ∈ SH(X0),

• 0 ≤ t− tj(x) ≤ sup(I), ∀(t, j) ∈ domx;
• tj+1(x)− tj(x) ∈ I holds ∀j ∈ N>0, if sup domj x =

+∞, and ∀j ∈ {1, 2, ..., sup domj x− 1}, otherwise.
In brief, I contains all the possible lengths of the flow

intervals between successive jumps. The first item is to bound
the length of the flow intervals not covered by the second
item, namely possibly the first one, which is [0, t1], and the
last one, which is domt x ∩ [tJ(x),+∞) where tJ(x) is the
time when the last jump happens (when defined). If I is
unbounded, the system may admit (eventually) continuous
solutions, while 0 ∈ I means the system can jump more
than once at the same time instance or have flow lengths
going to zero (including Zeno solutions).

In this paper, we tackle the general case where some state
components may be observable during flows and others via
the combination of flows and jumps. It follows that both the
flow and jump outputs may need to be fully exploited to
reconstruct the state so that neither (eventually) continuous

nor discrete/Zeno trajectories are allowed: both flows and
jumps need to be persistent as assumed next.

Assumption 1: Any maximal solution to H initialized in
X0 is complete and has flow lengths within a compact set
I ⊆ [τm, τM ] where τm > 0.

Our goal is thus to design an observer assuming we know:
1) the output(s) yc during flows and/or yd at jumps, 2) when
the plant’s jumps occur, and 3) some information about the
possible flow lengths, as in Assumption 1. Because the jump
times of H are known, we design an observer of the form

Ĥ


˙̂x=Fx̂+ Lc(τ)(yc −Hcx̂)
τ̇ =1

}
when H flows

x̂+ = Jx̂+ Ld(τ)(yd −Hdx̂)
τ+ =0

}
when H jumps

(2)

with jumps triggered at the same time as the plant’s, a timer
τ keeping track of the time elapsed since the previous jump,
and the gains Lc : [0, τM ] → Rn×pc and Ld : [0, τM ] →
Rn×pd function of this elapsed time τ such that the error
x−x̂ is GES. For clarification, the term “elapsed time” refers
to the time that has passed since the last jump, while “flow
length” means the duration of a full flow interval. These are
equal at the end of each flow interval but not in between.

Exploiting the fact that the flow lengths of the trajectories
to be estimated are known to be in I, we solve this problem
by designing the gains Lc(·) and Ld(·) such that every
maximal solution to the interconnection

ẋ=Fx
˙̂x=Fx̂+ Lc(τ)Hc(x− x̂)
τ̇ =1

 (x, x̂, τ) ∈ Ĉτ

x+ = Jx
x̂+ = Jx̂+ Ld(τ)Hd(x− x̂)
τ+ =0

 (x, x̂, τ) ∈ D̂τ

(3)

with Ĉτ = Rn × Rn × [0, τM ] and D̂τ = Rn × Rn × I,
satisfies

|x(t, j)− x̂(t, j)| ≤ ρ1|x(0, 0)− x̂(0, 0)|e−λ1(t+j)

on its domain for some positive scalars ρ1 and λ1. In that
sense, our design depends only implicitly on the sets X0,
C, and D through the choice of I satisfying Assumption
1, namely we choose to design the observer based on
the information contained in I only. Finally, we omit the
flow/jump sets when they are not explicitly needed.

III. OBSERVABILITY DECOMPOSITION

Let us start by noting that thanks to Assumption 1, all the
solutions to H initialized in X0 are included in the set of
solutions to

Hτ


ẋ = Fx
τ̇ = 1

}
(x, τ) ∈ Cτ yc = Hcx

x+ = Jx
τ+ = 0

}
(x, τ) ∈ Dτ yd = Hdx

(4)

with Cτ := Rn× [0, τM ] and Dτ := Rn×I. Notice that Hτ

admits a larger set of solutions than H since the information



of the flow and jump sets are replaced by the knowledge
of flow lengths in I only. However, as can be seen in (3),
we are actually designing an observer for Hτ and it is thus
relevant to consider Hτ for observability analysis.

In view of observer design and motivated by [15], we start
by proposing a change of variables decomposing the state x
of Hτ into components associated with different types of
observability.

A. Observability from yc during Flows

First, recall that if the whole state is observable during
flows from the flow output, i.e., the pair (F,Hc) is observable
(and still assuming 0 /∈ I, i.e., a dwell-time condition), it
is shown in [4] that a high-gain flow-based observer can
be designed, namely using only yc during flows with Lc

constant and Ld = 0. In this paper, we consider the more
general case where only part of the state is observable from
yc during flows. Let the (flow) observability matrix be

O := row(Hc, HcF, . . . ,HcF
n−1),

and assume it is of rank do := dim ImO < n. Consider
a basis (vi)1≤i≤n of Rn such that (vi)1≤i≤do

is a basis of
the observable subspace and (vi)vdo+1≤i≤vn is a basis of the
non-observable subspace kerO. Then, we define the matrix
D :=

(
Do Dno

)
where

Do :=
(
v1 . . . vdo

)
∈ Rn×do ,

Dno :=
(
vdo+1 . . . vn

)
∈ Rn×dno ,

which satisfy in particular

ODno = 0, Hce
FτDno = 0, ∀τ ≥ 0. (5)

We denote V := D−1 which we decompose consistently

into two parts V =:

(
Vo

Vno

)
, so that Vox represents the part

of the state that is instantaneously observable during flows
(see [16, Theorem 6.O6]).

A first idea could be to design a sufficiently fast high-
gain observer for Vox and estimate the rest of the state Vnox
either through yd or detectability. However, as noticed in [15,
Proposition 6], the fact that Vox and Vnox possibly interact
with each other during flows prevents us from achieving
stability by pushing the high gain and no satisfactory result
could be obtained via this road.

Actually, the estimation of any state that is not instanta-
neously observable during flows needs to take into account
the combination of flows and jumps. That is why it is
relevant to exhibit explicitly this combination via the change
of coordinates

x 7→
(
zo
zno

)
=

(
Voe

−Fτ

Vnoe
−Fτ

)
x, (6)

whose inverse is

x = eFτD
(
zo
zno

)
= eFτ (Dozo +Dnozno), (7)

and which, according to (5), transforms the dynamics (4)
into 

żo = 0
żno = 0
τ̇ = 1

z+o = Jo(τ)zo + Jono(τ)zno
z+no = Jnoo(τ)zo + Jno(τ)zno
τ+ = 0,

(8a)

with the measurements

yc = Hc,o(τ)zo, yd = Hd,o(τ)zo +Hd,no(τ)zno, (8b)

where Jo(τ) = VoJe
FτDo, Jono(τ) = VoJe

FτDno,
Jnoo(τ) = VnoJe

FτDo, Jno(τ) = VnoJe
FτDno, Hc,o(τ) =

Hce
FτDo, Hd,o(τ) = Hde

FτDo, and Hd,no(τ) =
Hde

FτDno. This idea of bringing at the jumps the whole
combination of flows and jumps is similar to the so-called
equivalent discrete-time system exhibited in [4] for jump-
based observer design. Notice that the observability decom-
position through V ensures that the flow dynamics of zo
and yc are totally independent of zno, which only impacts
zo at jumps. In other words, the whole dependence of the
observable part on the non-observable part via flows and
jumps has been gathered at the jumps. Besides, zo is by
definition observable from yc. More precisely, for any δ > 0,
there exists α > 0 such that the observability Gramian of the
continuous pair (0, Hc,o(τ)) satisfies∫ t+δ

t

H⊤
c,o(s)Hc,o(s)ds =∫ t+δ

t

D⊤
o e

F⊤sH⊤
c Hce

FsDods ≥ αI, ∀t ≥ 0. (9)

Indeed, this Gramian corresponds to the observability
Gramian of the pair (F,Hc) projected onto the observable
subspace. This condition is related to the uniform complete
observability of the continuous pair (0, Hc,o(τ)) in the
Kalman literature [17] but here with an arbitrarily small
window δ. Since zo is observable via yc, we propose to
estimate zo sufficiently fast during flows to compensate for
the interaction with zno at jumps.

B. Detectability at Jumps from yd and Implicit Output

The next step is to notice that a part of zno, more
precisely Jono(τ)zno, becomes visible in zo at the jumps
[15]. It naturally follows that this part of zno could be
indirectly estimated thanks to a sufficiently fast estimation
of zo and then used as an indirect measurement to estimate
a larger part of zno at jumps. This fact is also exploited
in [15] in the context of regulation and is illustrated in
an example in Section V-B, where some state components
are not observable during flows from yc and yet they are
estimated thanks to these hidden dynamics at jumps, without
relying on any other output yd. Here, more generally, a part
of zno could also be estimated via the output yd available at
jumps. That is why we first decompose zno into two parts,
zo′ ∈ Rdo′ and zno′ ∈ Rdno′ , where zo′ is detectable via
yd while the rest zno′ is required to be detectable from the



fictitious output Jono(τ)zno. Note that we could also have
proceeded the other way around, namely first extract the
detectable part from Jono(τ)zno and estimate the rest by yd,
but we choose here to prioritize the “physical” output yd.

In the forthcoming analysis, we assume that this “splitting”
can be done independently of the length of the flow intervals
τ , as stated next.

Assumption 2: There exists a constant change of coordi-

nates Υ :=

(
Υo′

Υno′

)
where Υo′ ∈ Rdo′×dno and Υno′ ∈

Rdno′×dno decomposing zno into

zno 7→
(
zo′

zno′

)
=

(
Υo′

Υno′

)
zno, (10)

with inverse Λ := Υ−1 decomposed consistently into Λ =:(
Λo′ Λno′

)
such that

Υo′Jno(τ)Λno′ = 0, Hd,no(τ)Λno′ = 0, ∀τ ∈ I, (11)

and the (discrete) pair (Υo′Jno(τ)Λo′ , Hd,o(τ)Λo′) is de-
tectable for all τ ∈ I.

Remark 2: For now, we require only the detectability of
the pair (Υo′Jno(τ)Λo′ , Hd,o(τ)Λo′) for each individual τ ∈
I in order to build the decomposition. However, τ , modeling
here the length of flow in between jumps, may vary in I from
one jump to the other throughout each solution. Therefore,
unless jumps are periodic, stronger properties may be asked
depending on the type of observer design. For the observer
in this paper, quadratic detectability in (20a) is required.

As a result, (8) is transformed into

żo = 0
żo′ = 0
żno′ = 0

τ̇ = 1

z+o = Jo(τ)zo + Joo′(τ)zo′ + Jono′(τ)zno′

z+o′ = Jo′o(τ)zo + Jo′(τ)zo′ + Jo′no′(τ)zno′

z+no′ = Jno′o(τ)zo + Jno′o′(τ)zo′ + Jno′(τ)zno′

τ+ = 0,
(12a)

with the measurements

yc = Hc,o(τ)zo,
yd = Hd,o(τ)zo +Hd,o′(τ)zo′ +Hd,no′(τ)zno′ ,

(12b)

where Joo′(τ) = Jono(τ)Λo′ , Jono′(τ) = Jono(τ)Λno′ ,
Jo′o(τ) = Υo′Jnoo(τ), Jo′(τ) = Υo′Jno(τ)Λo′ , Jo′no′(τ) =
Υo′Jno(τ)Λno′ , Jno′o(τ) = Υno′Jnoo(τ), Jno′o′(τ) =
Υno′Jno(τ)Λo′ , Jno′(τ) = Υno′Jno(τ)Λno′ , Hd,o′(τ) =
Hd,no(τ)Λo′ , and Hd,no′(τ) = Hd,no(τ)Λno′ , such that for
all τ ∈ I, the pair (Jo′(τ), Hd,o′(τ)) is detectable, and
Jo′no′(τ) = 0 and Hd,no′(τ) = 0 according to (11).

This implies in particular that the jump dynamics of zo′

and the jump output yd become decoupled from zno′ after the
first jump. Since after the first jump onwards, no information
on the zno′ part is contained in yd, the only way to access
it is using the fictitious output Jono′(τ)zno′ visible in zo
after the jump, and thus implicitly visible through yc during
flows. In other words, intuitively speaking, we see from this

new form that if zo is estimated sufficiently fast during flows
through yc, then the term Jono′(τ)zno′ impacting its jump
may be implicitly recovered and zno′ may be estimated using
this fictitious measurement. For that, we make the following
Assumption 3.

Assumption 3: The discrete pair (Jno′(τ), Jono′(τ)) is
detectable for all τ ∈ I and there exists Kno′ ∈ Rdno′×do

such that Jno′(τ)−Kno′Jono′(τ) is Schur for all τ ∈ I.
Remark 3: While the detectability of (Jno′(τ), Jono′(τ))

serves as a necessary assumption to estimate zno′ , assuming
Kno′ independent of τ is required here to perform the next
change of variables. But depending on the type of observer,
stronger or weaker properties may be asked. For the observer
in this paper, the stronger property (20b) is required.

In order to further highlight this hidden detectability, we
exploit the existence of Kno′ given by Assumption 3 and
perform a third change of coordinates

η = zno′ −Kno′zo ∈ Rdno′ . (13)

As a result, (12) is finally transformed into

żo = 0
żo′ = 0
η̇ = 0
τ̇ = 1

z+o = Jo(τ)zo + Joo′(τ)zo′ + Jono′(τ)η
z+o′ = Jo′o(τ)zo + Jo′(τ)zo′ + Jo′no′(τ)η
η+ = Jηo(τ)zo + Jηo′(τ)zo′ + Jη(τ)η
τ+ = 0,

(14a)

with the measurements

yc = Hc,o(τ)zo,
yd = Hd,o(τ)zo +Hd,o′(τ)zo′ +Hd,no′(τ)η,

(14b)

where the continuous pair (0, Hc,o(τ)) is observable in the
sense of (9) and for all τ ∈ I,

• Jη(τ) is Schur;
• The discrete pair (Jo′(τ), Hd,o′(τ)) is detectable;
• Jo′no′(τ) = 0 and Hd,no′(τ) = 0;

with the matrices defined by Jo(τ) = Jo(τ)+Jono′(τ)Kno′ ,
Jo′o(τ) = Jo′o(τ) + Kno′Jo′no′(τ), Jηo(τ) = Jno′o(τ) −
Kno′Jo(τ) + Jno′(τ)Kno′ − Kno′Jono′(τ)Kno′ , Jηo′(τ) =
Jno′o′(τ) −Kno′Joo′(τ), Jη(τ) = Jno′(τ) −Kno′Jono′(τ),
and Hd,o(τ) = Hd,o(τ) +Kno′Hd,no′ .

In those new coordinates, provided zo and zo′ are esti-
mated sufficiently fast, η can naturally be estimated at jumps
by a simple copy of its dynamics without any additional
output injection thanks to Jη(τ) being Schur for all τ ∈ I.

We summarize the series of transformations and the ob-
server above into Lemma 1.

Lemma 1: Under Assumptions 2 and 3, the change of
coordinates

x 7→ z :=

zo
zo′

η

 =

 Vo

Υo′Vno

Υno′Vno −Kno′Vo

 e−Fτ

︸ ︷︷ ︸
T (τ)

x (15)



transforms the dynamics (4) into (14) with the same
flow/jump maps. The inverse of this transformation is

x := eFτ
(
Do +DnoΛno′Kno′ DnoΛo′ DnoΛno′

)︸ ︷︷ ︸
T −1(τ)

z.

(16)
We want to insist that the detectability of the components

estimated at jumps comes from the flow-jump combination
and not due to jumps alone since the useful information
contained in the flow dynamics and output is gathered at
the jumps via the first transformation (6).

With the state in the z-coordinates now decomposed into
components of different observability properties, we propose
the following general observer structure in these coordinates

˙̂zo = Lc,o(τ)(yc −Hc,o(τ)ẑo)
˙̂zo′ = 0
˙̂η = 0
τ̇ = 1

ẑ+o = Jo(τ)ẑo + Joo′(τ)ẑo′ + Jono′(τ)η̂
ẑ+o′ = Jo′o(τ)ẑo + Jo′(τ)ẑo′ + Jo′no′(τ)η̂ + Ld,o′(τ)×

(yd −Hd,o(τ)ẑo −Hd,o′(τ)ẑo′ −Hd,no′(τ)η̂)
η̂+ = Jηo(τ)ẑo + Jηo′(τ)ẑo′ + Jη(τ)η̂
τ+ = 0.

(17)

IV. OBSERVER DESIGN

We now design the gains of the observer (17) written
in the new coordinates in order to make the estimation
error z − ẑ GES. Exploiting the uniform invertibility of
the transformation (15), GES is then recovered in the initial
coordinates by taking

x̂ := T −1(τ)ẑ (18)

with ẑ := (ẑo, ẑo′ , η̂) and T −1(·) defined in (16).
Because the output matrix Hc,o(τ) varies but still satisfies

the observability condition (9), we design the gain Lc,o(·)
as the gain of a continuous-time Kalman-like observer. Its
advantage over a Kalman observer is that it allows for
direct Lyapunov analysis and a direct relationship between
the Lyapunov matrix and the observability Gramian. More
precisely, the dynamics of the observer are given by

˙̂zo = P−1H⊤
c,o(τ)R

−1(τ)(yc −Hc,o(τ)ẑo)
˙̂zo′ = 0
˙̂η = 0

Ṗ = −λP +H⊤
c,o(τ)R

−1(τ)Hc,o(τ)
τ̇ = 1

ẑ+o = Jo(τ)ẑo + Joo′(τ)ẑo′ + Jono′(τ)η̂
ẑ+o′ = Jo′o(τ)ẑo + Jo′(τ)ẑo′ + Jo′no′(τ)η̂ + Ld,o′(τ)×

(yd −Hd,o(τ)ẑo −Hd,o′(τ)ẑo′ −Hd,no′(τ)η̂)
η̂+ = Jηo(τ)ẑo + Jηo′(τ)ẑo′ + Jη(τ)η̂
P+ = P0

τ+ = 0,
(19)

with jumps triggered at the same time as H in the same way
as (2), P0 ∈ Sdo×do

>0 and where τ 7→ R(τ) ∈ Spc×pc

>0 is a

weighting matrix that is defined and is continuous on [0, τM ]
to be chosen only for design purpose.

We first provide a sufficient condition on the jump map of
observer (19) to guarantee the GES of the estimation error
for a sufficiently large flow parameter λ.

Assumption 4: There exist Qo′ ∈ Sdo′×do′
>0 , Qη ∈

Sdno′×dno′
>0 , Ld,o′ : [0, τM ] → Rdo′×pd bounded on [0, τM ]

and continuous on I, and Kno′ ∈ Rdno′×do such that for all
τ ∈ I,

(Jo′(τ)− Ld,o′(τ)Hd,o′(τ))
⊤Qo′(Jo′(τ)− Ld,o′(τ)Hd,o′(τ))

−Qo′ < 0, (20a)

(Jno′(τ)−Kno′Jono′(τ))
⊤Qη(Jno′(τ)−Kno′Jono′(τ))

−Qη < 0. (20b)
These conditions require in particular the detectability of

the pairs (Jo′(τ), Hd,o′(τ)) and (Jno′(τ), Jono′(τ)) for each
frozen τ . But the fact that Qo′ , Qη , and Kno′ are independent
of τ makes this assumption stronger: this is related to the
notion of quadratic detectability [18]. It allows us to build
an observer for any sequence of flow lengths (τj)j∈N ∈ I
and thus requires in fact the detectability of the discrete pairs
for any such sequences. A future question is to thoroughly
investigate which part of Assumptions 1, 2, 3, and 4 are
necessary observability/detectability conditions for observer
design.

Theorem 1: Under Assumptions 1, 2, 3, and 4, given any
matrix P0 ∈ Sdo×do

>0 , there exists a scalar λ⋆ > 0 such that
for any λ > λ⋆, there exist scalars ρ1 > 0 and λ1 > 0
such that for any solution x of (1) initialized in X0 and
any solution ẑ of the observer (19) with P (0, 0) = P0 and
τ(0, 0) = 0, and jumps triggered at the same time as in x,
we have

|x(t, j)− x̂(t, j)| ≤ ρ1|x(0, 0)− x̂(0, 0)|e−λ1(t+j), (21)

for all (t, j) ∈ domx, with x̂ obtained from ẑ by (18).
Sketch of Proof: Define the error z̃ = z − ẑ and similarly

for z̃o, z̃o′ , and η̃. Let us consider the Lyapunov function

V (z̃, τ) = e
λ
2 τ z̃⊤o P(τ)z̃o

+ ko′e
−ϵo′τ z̃⊤o′Qo′ z̃o′ + kηe

−ϵητ η̃⊤Qη η̃, (22)

where ko′ , kη , ϵo′ , and ϵη are positive scalars and
P(τ(t, j)) = P (t, j) for all (t, j) ∈ domx. The part z̃o
contracts during flows thanks to the Kalman-like correction
term, while z̃o′ and η̃ contract at jumps thanks to the jump-
based observers. The weights ko′ and kη are tuned to ensure
negativity at jumps despite the interactions between those
components. As for the exponential terms, the role of e

λ
2 τ is

to bring negativity from flows to jumps, while that of e−ϵo′τ

and e−ϵητ is instead to bring negativity from jumps to flows.
The proof consists in showing that:
• Using (9), there exist positive scalars ρ and ρ such that

ρ∥z̃∥2 ≤ V (z̃, τ) ≤ ρ∥z̃∥2, ∀z̃ ∈ Rn, ∀τ ∈ [0, τM ];

• During flows, for all z̃ ∈ Rn and for all τ ∈ [0, τM ] ⊃
[τm, τM ] ⊇ I, we have V̇ ≤ −min{λ

2 , ϵo′ , ϵη}V ;



• At jumps, there exist ci ≥ 0, i = 1, 2, . . . , 9, ao′ > 0,
aη > 0, and λm > 0 all independent of λ such that for
any positive scalars γ1, γ2, and γ3, for all z̃ ∈ Rn and
for all τ ∈ I,

V + − V ≤ (c1 + γ1c2 + γ2c3 − e
λ
4 τmλm)z̃⊤o z̃o

−
(
ko′ao′−ko′(1−e−ϵo′τM )−c4−

ko′c5
γ1

−kηγ3c6

)
z̃⊤o′ z̃o′

−
(
kηaη−kη(1−e−ϵητM )−c7−

kηc8
γ2

− kηc9
γ3

)
η̃⊤η̃.

We can then show that this quantity can be made negative
definite by successively picking the degrees of freedom. That
leads to λ having to be high enough.

V. EXAMPLES

We illustrate the proposed methods using academic ex-
amples. The LMIs are solved using the LMI Lab package
in MATLAB. Consider the hybrid system of form (1) with
state x = (x1, x2, x3, x4) and

F =


0 −1 0 0
1 0 0 0
0 0 0 −2
0 0 2 0

 , J =


0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

Hc =
(
1 0 0 0

)
,

with random flow lengths varying in I = [ π10 ,
4π
10 ]. We obtain

eFτ = diag(ℜ(τ),ℜ(2τ)). It can be seen that only x1 and x2

are observable during flows from yc and thus we obtain zo =(
ℜ(−τ) 02×2

)
x and zno =

(
02×2 ℜ(−2τ)

)
x with the

matrices Jo(τ) = 02×2, Jono(τ) =
(
cos(2τ) − sin(2τ)

0 0

)
,

Jnoo(τ) = 02×2, Jno(τ) = ℜ(2τ), and Hc,o(τ) =(
cos(τ) − sin(τ)

)
.

A. zno Estimated Using yd Only

Consider Hd =
(
0 0 1 0

)
, which gives Hd,o(τ) =

01×2 and Hd,no(τ) =
(
cos(2τ) − sin(2τ)

)
. Because the

pair (Jno(τ), Hd,no(τ)) is fully observable for all τ ∈ I, we
attempt to estimate the full state zno from yd only using a
jump-based observer. In other words, zo′ = zno and zno′ is
empty. While a varying gain is possible, here for simplicity,
solving (20a) results in the constant gain Ld,no =

(
1 0

)⊤
.

B. zno Estimated Using the Fictitious Output Only

In fact, at each frozen τ , the pair (Jno(τ), Jono(τ)) is
also observable except when sin(2τ) = 0 ⇐⇒ τ = k π

2
with k integer. This means that zno is actually observable
through the fictitious measurement of zo at jumps for all
frozen τ ∈ I and we can thus attempt to estimate it without

using yd. Solving (20b) has led to Kno =

(
1 0
0 0

)
. We see

from this example that thanks to the flow-jump coupling,
by using zo as a fictitious measurement, we can estimate
state components not observable during flows from the flow
output even without any real measurements at jumps (hidden
dynamics).

C. zno Estimated Using Both yd and the Fictitious Output

Consider now Hd =
(
0 0 0 1

)
and π

2 ∈ I. Unfor-
tunately, we are not able to decompose zno with a constant
Υ satisfying Assumption 3 when I is not reduced to π

2 .
But assume now that the jumps are π

2 -periodic, so that
I = {π

2 }, and decompose zno into zo′ =
(
0 1

)
zno and

zno′ =
(
1 0

)
zno. The zo′ part is actively corrected at

jumps thanks to yd with the constant gain Ld,o′ = 1 while
η = zno′ −

(
1 0

)
zo contracts naturally and is estimated as

a hidden dynamics with zo as a fictitious measurement.
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[10] T. Raff and F. Allgöwer, “Observers with Impulsive Dynamical
Behavior for Linear and Nonlinear Continuous-Time Systems,” IEEE
Conference on Decision and Control, pp. 4287–4292, 2007.

[11] T. Raff, M. Kogel, and F. Allgower, “Observer with Sample-and-
hold Updating for Lipschitz Nonlinear Systems with Nonuniformly
Sampled Measurements,” in 2008 American Control Conference, 2008,
pp. 5254–5257.

[12] F. Ferrante, F. Gouaisbaut, R. Sanfelice, and S. Tarbouriech, “State
Estimation of Linear Systems in the Presence of Sporadic Measure-
ments,” Automatica, vol. 73, pp. 101–109, Nov. 2016.

[13] A. Sferlazza, S. Tarbouriech, and L. Zaccarian, “Time-Varying
Sampled-Data Observer With Asynchronous Measurements,” IEEE
Transactions on Automatic Control, vol. 64, no. 2, pp. 869–876, 2019.

[14] P. D’Alessandro, A. Isidori, and A. Ruberti, “A New Approach to the
Theory of Canonical Decomposition of Linear Dynamical Systems,”
SIAM Journal on Control, vol. 11, no. 1, pp. 148–158, 1973.

[15] N. Cox, L. Marconi, and A. R. Teel, “Isolating Invisible Dynamics in
the Design of Robust Hybrid Internal Models,” Automatica, vol. 68,
pp. 56–68, 2016.

[16] C.-T. Chen, Linear System Theory and Design. CBS College
Publishing, 1984.

[17] R. Kalman and R. Bucy, “New Results in Linear Filtering and
Prediction Theory,” Journal of Basic Engineering, vol. 108, pp. 83–95,
1961.

[18] F. Wu, “Control of Linear Parameter Varying Systems,” Ph.D. disser-
tation, University of California at Berkeley, 1995.


