Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Pré-publication, Document de travail

Inline Monitoring of 3D Concrete Printing using Computer Vision

Abstract : The detection of anomalies is at the basis of any 3D printing control. In this paper, we propose a methodology for detection of anomalies based on computer vision. This methodology is composed of three modules: 1) image acquisition, 2) interlayer line and layer segmentation and 3) characterization of the local geometry and texture of the layers and detection of anomalies. The image acquisition is performed with a camera fixed to the printing nozzle. The proposed layer segmentation method recognizes and locates the lines separating the printed layers (F-score = 91%). The third module-taking as input the segmentation and the original image-evaluates the geometry of the layers and the texture of the material. The results are used to detect geometry anomalies when the values are outside the expected range. The material texture is classified into four classes of quality (macro-averaged F-score = 94%). We present the results and show the suitability of our methodology for automatic detection and localization of anomalies on images acquired during a printing session.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-03788879
Contributeur : Petr Dokladal Connectez-vous pour contacter le contributeur
Soumis le : mardi 27 septembre 2022 - 10:10:43
Dernière modification le : samedi 22 octobre 2022 - 05:13:12

Fichier

Rill_Additive_Manufacturing_20...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03788879, version 1

Relations

Citation

Rodrigo Rill-García, Eva Dokladalova, Petr Dokládal, Jean-François Caron, Romain Mesnil, et al.. Inline Monitoring of 3D Concrete Printing using Computer Vision. {date}. ⟨hal-03788879⟩

Partager

Métriques

Consultations de la notice

66

Téléchargements de fichiers

11