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Abstract (150–250 words) 

The literature on constraints in creativity remains inconclusive (Sternberg and Kaufman 

2012) in that constraints can limit (Amabile 1998; Rosso 2014) or support (Onarheim 2012; 

Keupp and Gassmann 2013; Haught-Tromp 2017) creativity.  

However, a new approach suggests that examination of the design process can explain 

how a constraint encourages or impedes creativity (Hatchuel and Klasing Chen 2017). This 

approach is based on advances in the theory of generativity according to C-K design theory 

(Hatchuel et al. 2018). C-K design theory provides a formal model of how creativity can be 

limited or enhanced (Hatchuel et al. 2011b), that has been experimentally confirmed (Agogué 

et al. 2014a; Ezzat et al. 2018; Arrighi et al. 2015; Freitas Salgueiredo and Hatchuel 2016).  

In this chapter, we deepen the approach by establishing three critical conditions and 

mechanisms that explain how a given constraint P* improves the generativity of a design 

process: we show that a constraint is all the more generative when the constraint brings 

knowledge that is independent of the designer’s initial knowledge, when the constraints closes 

a ‘fixation’ area, and when the design process oriented by the constraint leads to uncover new 

knowledge independent of designer’s initial knowledge.  

These findings explain the variety of generative effects associated with constraints, the 

conditions for a constraint to be generative in a given design task, and why some constraints 

can unexpectedly increase or decrease designers generativity. Finally, the findings confirm the 

resolution of the paradox of constraints in creativity.  
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I.  Introduction: Addressing The Issue Of Constraint Generativity With C-

K Design Theory 

Contemporary grand challenges (e.g., those relating to mobility, education, biodiversity, 

and climate) can be phrased as a need for innovation under strong constraints (e.g., constraints 

on financial resources, energy, materials, and competencies). One might be optimistic looking 

back at artistic traditions or the exploits of famous engineers (e.g., Brunelleschi’s dome was 

constructed without scaffolding). However, optimism decreases when one considers that 

constraints are also said to limit innovation and creativity. Do constraints encourage or 

impede creativity? 

The literature remains surprisingly inconclusive (Sternberg and Kaufman 2012; 

Damadzic et al. 2022), despite important recent contributions. Constraints were initially 

perceived as restricting creativity, the latter being seen as benefiting from free imagination 

and freely available resources (Johnson-Laird 1988; Amabile 1998; Amabile et al. 2005). 

More recently, authors have increasingly acknowledged that constraints might also support 

creativity, as observed in experimental works (Agogué et al. 2014a; Ezzat et al. 2018; Ezzat et 

al. 2017a; Ezzat et al. 2017b),, real-life studies conducted in various environments (Onarheim 

2012; Rosso 2014; Keupp and Gassmann 2013; Arrighi et al. 2015; Eckert et al. 2012; Groop 

et al. 2015; Hatchuel and Klasing Chen 2017), and computing science (Krish 2011; Vajna et 

al. 2005; Arrighi et al. 2016). Exhaustive systematic reviews of the literature (Onarheim and 

Biskjaer 2013; Acar et al. 2018) have provided consensus on some points.  

• Frequent inconclusiveness: It is well documented that constraints can limit (Amabile 

1998; Rosso 2014) and support (Onarheim 2012; Keupp and Gassmann 2013; Haught-

Tromp 2017) creativity . It remains difficult to clarify what makes that a constraint 

positively contributes to having more varied and more original ideas.  
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• Plausibility of an inverted U-shaped law: One might make the hypothesis of an 

inverted U-shaped relation between the level of a constraint and its generative effect 

(Acar et al. 2018; Rosso 2014). A “light” constraint would slightly contribute to 

creativity, a stronger one would strongly contribute and very strong constraint would 

impede creativity (Gillier et al. 2018).   

• Constraint aporia: New cognitive approaches (Haught-Tromp 2017; Sternberg and 

Kaufman 2012)  are being adopted in studying the deep relations between constraints, 

knowledge, and creativity to address the apparent aporia (Johnson-Laird, 1988) of 

how a constraint, which would at the same time restricts the solution space (because it 

constraints the exploration in a specific direction) but would also enlarge it since a 

generative constraint is supposed to lead to solutions that were not accessible without 

it. Hence the aporia: how can a constraint simultaneously restrain and open a solution 

space?  

The present paper focuses on one particular point in shedding light on the effect of 

constraints on creativity and innovation: how constraints contribute to generativity in a given 

design task. This formulation corresponds to three assumptions that need clear statements:  

Assumption 1: We focus on generativity, and even radically original generativity – seen 

as the generation of novel, original propositions. Focusing on generativity, we want to avoid 

possible misinterpretation related to ‘innovation’ or ‘creativity’: a) Generativity and 

innovation: innovation relates both to novelty and market success – hence innovation might 

include rigorous product development processes; as a consequence a constraint could thus 

contribute to innovation by enabling efficient development of one single product, which 

might be far from generativity - in this case one will have a relationship between constraint 

and innovation but not necessarily between constraint and generativity, ie only the ‘novelty’ 

facet of innovation. b) Generativity vs creativity: creativity is often defined using Amabile’s 
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definition of being novel and useful. It is thus unclear to which facets constraints contribute: 

constraints can be considered as contributing more to usefulness than to originality and one 

could have a relationship between constraint and creativity (usefulness) but not necessarily 

between constraint and generativity. In this paper we focus on this relationship between 

constraint and generativity, the ie only the ‘originality’ facet of creativity. c) For more rigor, 

we will rely more precisely on a narrow definition of generativity: recent reviews on 

generativity (Thomas and Tee 2021)  have shown that generativity can be either rule-based 

(i.e., model-based, deterministic, combinatorial), such as for the meaning of generativity 

given by Zittrain (Epstein 1999; Zittrain 2006), or generativity can be more “radical”  (i.e. 

changing the design rules, relying on newly discovered rules…), such as for the meaning of 

radical originality given by Boden (e.g., (Boden 1999; Hatchuel et al. 2011a). In this chapter, 

we consider generativity in terms of this demanding meaning of creating radically original 

propositions. Hence our first assumption: we study how constraints relate to generativity 

where generativity will be associated to this generation of radically original propositions.  

Assumption 2: As explained by Haught-Tromp (2017), one can distinguish between 

constraints relating to the design situation (the context where the design takes place: within a 

certain company, with certain competencies, within a certain budget, following organizational 

procedures, etc.) and constraints ‘directly’ linked to the design task (e.g., an object X with the 

property P has to be designed also with the property P*). In this chapter, we only consider 

constraints relating to the design task. This restriction is justified by two reasons. 1) It allows 

us to focus on the design process itself and to solidly model the design process under 

constraints. 2) It allows us to focus on the critical process in which the constraint acts on 

design generativity. We also expect that a better understanding of the effect of the task 

constraint on generativity can contribute to the formulation of specific hypotheses of the 

effect of a situation constraint on generativity.  
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Assumption 3: In design, a constraint can have several meanings and roles. Here, we 

focus on modeling situations where a specific design task is given i.e., the task “design X with 

property P” is identified before an (additional) constraint comes into play, and the constraint 

that we study is imposed on top of the design task (i.e., the constraint P* is added to the design 

task, so that the task becomes “design X with properties P and P*”). In this situation we can 

analyze the effect of a constraint P* on a design task “design X with property P”. Why this 

specific approach? In particular it is clear that one could consider P as a “constraint” imposed 

on the object X. However this would lead to a slightly different research question: the effect 

of imposing a constraint P on an object X – and X as such is not a design task and we could 

then wonder whether imposing P ‘creates’ a design task – this could be an interesting and 

relevant question1. Still it is not question we address in this paper where we more specifically 

want to discuss the effect of a constraint P* on a design task, hence comparing the design task 

development without the constraint P* vs with the constraint P*.  

These three assumptions clarify our research topic. Given a certain design task (design 

X with property P), we analyze whether the same task with an additional constraint P* (design 

X with properties P and P*) increases or decreases generativity, i.e. the generation of radically 

 

1 The answer to this question is actually quite straightforward in design theory such as C-K design theory 

– there are three possibilities: i/ either P is a property that the object X can already have (X =a car, P=with 

wheels), in which case there is no generativity induced by this constraint P (cars with wheels exist already, no 

radically original proposition); ii/ or the property P is proven impossible for the object X (X=a physical object, 

P=with perpetual motion) in which case the constraint leads to nothing (a object with perpetual motion is proven 

impossible – even patent law recommends to refuse patents which claim perpetual motion), iii/ or it is 

undecidable whether there is an object X with property P and there begins a design process that, if successful, 

creates a radically original proposition.  
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original propositions so solve the design task X with property P. The present paper makes the 

following contributions to the literature. 1) We model the effect of a constraint in the design 

process. 2) We contribute to solving the aporia described above by showing that a constraint 

can (seem to) restrain the exploration space but in parallel open the door to new knowledge 

that acts as a resource for future exploration. 3) We establish three critical mechanisms (i.e., 

knowledge injection, exploration partition, and knowledge discovery) that explain how a 

given constraint P* affects the generativity of a design process: in knowledge injection the 

constraint can bring knowledge that is independent (or not) of the designer’s initial 

knowledge, in exploration partition the constraint can close a ‘fixation’ area (or not), and in 

knowledge discovery the design process oriented by the constraint can lead to uncover new 

knowledge independent of designer’s initial knowledge (or not)). From these mechanisms we 

deduce a sufficient condition and a necessary condition for a generative constraint. 

The remainder of the paper is organized as follows. We first establish the above results 

adopting a formal approach, based on C-K design theory. We then present several empirical 

results for different contexts (i.e., laboratory experiments, computer science, and real-life 

experiments) that confirm the theoretical prediction. We finally show how our results might 

be extended to other types of constraint. 

II.  Modeling The Generative Effect Of Constraints With Design Theory  

II.1. C-K Theory And Generativity 

To model the generative effect of constraints on a given design task we rely on design 

theory, which provides us today with advanced and well-controlled models of generativity, 

one of the most advanced of these models being C-K design theory (Hatchuel et al. 2011a; 

Hatchuel et al. 2018).  
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C-K theory models a design process as follows. 

1) Given a knowledge base Kini comprising true and/or false propositions, a concept C0 

is a proposition of the form “C0 = there is an X with property P such that i/ XP is interpretable 

(i.e., X relates to knowledge Kini(X) in Kini and P relates to Kini(P) in Kini) and ii/ the 

proposition is neither true nor false in Kini, i.e. it cannot be proven with Kini that XP exists or 

that XP cannot exist. There is a disjunction between XP and Kini, and XP is unknown in Kini. 

2) The design process is a dual expansion. 

a) Expansion of Kini: New propositions dK are added to the K space – this is a learning 

process. By construction, these propositions are true or false.  

b) Partition of C0 = XP: It is possible to add a property Pi (from the K space) to the 

initial concept C0 to form the proposition XPPi. One has to check whether XPPi is now true 

(or false) or whether XPPi is still in C. In the latter case, XPPi is a partition of XP. XPPi can 

be used to generate new knowledge, which is another expansion of Kini. Note that in C-K 

theory, one distinguishes between two types of partition. Either Pi is deduced from Kini(X) (ie 

Pi is dependent of Kini) and the partition is said to be restrictive or Pi is independent of Kini(X) 

and the partition is said to be expansive.  

3) The process stops when XPP1…Pn becomes true in K. Here, XPP1…Pn is a 

conjunction. See Figure 1-a below for the synthesis. Note that a conjunction requires 

knowledge expansion dK. Brief demonstration: Suppose that a conjunction XPP1…Pn is 

made without expansion. The conjunction comes from Kini(X) and XP is actually true in 

Kini(X). However, XP is a concept, unknown in Kini(X). That is to say, generativity is 
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associated with new knowledge dK, beyond Kini(X)2. A conjunction can be based on new 

knowledge depending on Kini, in which case this corresponds to rule-based generativity (see 

above: generativity based on known design rules, that are combined and optimized); or 

conjunction can come from new knowledge independent of Kini (newly discovered design 

rules – see above: generativity that corresponds to radically original propositions). In C-K 

terms, rule-based generativity is called restrictive generativity and the generation of radicaly 

new propositions is called expansive generativity (see figure 1 below).  

 

Figure 1: a representation of C-K design process (without specific constraint) 

(figure 1-a) and one simple example (figure 1-b). Figure 1-a: in C-space, the concepts 

(ideas, chimeras, etc) either expansive (grey-shaded area in C-space), meaning that it is based 

 

2 By construction, a conjunction is a proof of independence. XP is unknown initially, XP is not true in 

Kini(X), and thus, all X in Kini are non-P. Following the conjunction XPP1…Pn, there is an X with property P. 

Hence, there is an X with non-P and an X with P and thus X and property P are independent. Therefore, dK 

contains knowledge that is indispensable for this proof of independence.  
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on new knowledge, independent from Kini (grey-shaded area in K-space), or restrictive 

(white area in C-space) meaning that it is based on knowledge that is dependent of Kini, i.e. 

resulting from combination, deduction, inference,… from Kini (white area in K-space). Figure 

1-b: a simplified example on the concept “a safer car”.  

 

We can now express our research topic in C-K terms: we are interested in expansive 

generativity caused by constraint. We will now explain how we model a constraint in C-K 

theory. 

II.2. Analyzing The Generativity Of A Constraint In C-K Theory 

Intuitively, a constraint will be added to the design process described above in C-K and 

this ‘constraint’ can make the process generate ‘expansive’ propositions (expansive 

generarivity) or ‘restrictive’ one. We know from C-K that expansive generativity is reached to 

the condition that the designer relies on new knowledge, independent from the initial one. 

Hence we wonder how a constraint added to a design process can contribute to the discovery 

(and use)  of new knowledge independent of Kini in the design process.  

We consider that a constraint added to a design process corresponds to adding P* to a 

concept C0 = XP. The generativity of constraint P* in C-K theory follows from the definitions 

given above. Given initial knowledge Kini (that contains knowledge of X, Kini(X), and 

knowledge of P, Kini(P)), a constraint P* is generative iff XPP* leads to a conjunction (i.e., XP 

with additional P1…Pn becomes true), and this conjunction is related to P*. Based on the 

above presentation of C-K theory, it is clear that a constraint can lead to restrictive 
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generativity (ie based on dependent K) or expansive generativity (I based on independent K). 

We are interested in the latter case3.  

This calls for examples:  

• One example is the design of a safer car (C0: X = car, P = safer) that anticipates 

future CO2 emission regulations (P*). In designing the safer car, designers 

might develop original engine solutions that emit very little CO2.  

• On this same C0, one can consider other types of constraint, such as a safer car 

“with biomimicry”, a safer car “at very low cost”, and a safer car “without 

wheels”.  

• Another (famous) example is “a new original novel, written without the letter 

e”, which led Georges Perec to write La Disparition (1969). This constraint is 

similar to the famous example of “Green Eggs and Ham”, a story written with 

only 50 different words, studied by Haught-Tromp (2017).  

We now analyze the formal conditions for P* having a generative effect.  

1) Formally speaking, adding a constraint P* to C0 corresponds to three operations in C-

K theory (see Figure 1).  

 

3 Note that for the above model, a conjunction related to P* is of the form XPP1…Pn, where P* is not 

necessarily included. For instance, the task of designing “a safer car without wheels” leads to learning how 

wheels are related to safety and helps in the design of safer wheels for cars. Formally, it is possible that XPP* is 

formulated during the design process, leading to new knowledge that is then used to generate alternatives on XP 

without P*. This is the so-called “crazy concept” effect.  
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a) A knowledge injection effect: Any property in C has to be associated with a 

proposition in K so that adding P* to XP means that K(P*) is added to K4. K(P*) is denoted 

dKP* (i.e., new knowledge associated with P*). 

b) A partition effect: P* is added to XP to create a new concept XPP*.5   

c) Knowledge discovery driven by XPP*, which is a learning effect dK stimulated by 

XPP*, denoted dKXPP*: XPP* might lead to K-expansion (i.e., new learning stimulated by 

XPP*), which is different from the knowledge injection effect. 

2) Generativity of P* on XP can come from the above three processes (see Figure 2 and 

Table 1 below). We analyze each of the processes individually.  

a) A constraint can be generative (or not) because the constraint terms 

themselves bring new knowledge (or not). More formally: knowledge injection 

K(P*) =	dKP* can be limited and included in Kini(X), in which case it does not relate to 

generativity (see the above example of wheels) and inversely, dKP* can also relate to 

(a lot of) new knowledge, (some of which is) outside of Kini(X), in which case it is 

more related to generativity. In the example of “a safer car with biomimicry”, P* 

‘biomimicry’ provides much original knowledge, not always related to a “car” or 

“safety”, just because the designer can suddenly consider new knowledge around 

biology and life science.  

 

4 At least, P* has to be interpretable in K, meaning that K(P*) = {P*} at least but that K(P*) can be broader. 

5 The partition effect is not systematic. It is always possible that P* finishes the design if XPP* appears as 

true or false in K (i.e., P* provokes a conjunction). This might correspond to the case that the constraint is so 

strong that the answer is immediately “false”; e.g., the constraint of “a safer car right now”. Yet, in the remainder 

of the paper, we suppose that P* does not immediately lead to a conjunction and hence the partition effect. 
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This operation illustrates the complexity of constraint generativity. Knowledge 

injection independent of Kini(X)” is more readily related to (expansive) generativity 

than knowledge injection dependent on Kini(X) (deductible from Kini(X)). However, 

this condition is insufficient because some elements of dKP* might still be related to 

Kini(X) (e.g., a car can have aspects of biomimicry, such as in the case that Kini 

contains “some cars follow aerodynamics laws”). This corresponds to the fact that 

against an a priori belief, P* = biomimicry is not necessarily an expansive partition and 

knowledge discovery driven by XPP* can only lead to knowledge in Kini(X). 

 

b- A constraint can be generative because it transforms the design task and 

orients the design exploration in a certain direction. More formally:  the partition with 

P* (design X with P and P*) can correspond to an expansive partition and hence 

clearly be outside Kini(X) (e.g., “all cars that we know have wheels” à P* = “without 

wheels”). In this case, the constraint P*, “without wheels”, encourages exploration that 

is “out of the box” and might lead to (expansive) generativity. P* can also correspond 

to a restrictive partition and hence clearly be inside Kini(X) (e.g., “all cars that we 

know have comfortable seats” à P* = “with comfortable seats”).  

An expansive partition is more readily related than a restrictive partition to 

generativity. However, this condition is not sufficient. An expansive partition is 

insufficient for generativity because it does not necessarily lead to new knowledge 

contributing to a conjunction. Consider “a safer car (XP) without wheels (P*)”The 

designer might simply draw a flying carpet, which can be considered a known 

imaginary of car mobility and hence already present in Kini(X) (Hooge and Le Du 

2016). This proposition would not create new knowledge independent of Kini.  
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c- The new ‘constrained’ design task will lead to produce new knowledge that 

can be original, independent of the initial knowledge of th designer. Formally: 

knowledge discovery driven by XPP*: dKXPP* is new knowledge discovered thanks to 

XPP* and it can be limited and included in Kini(X), in which case it does not relate to 

(expansive) generativity (see the above examples of “wheels” and “biomimicry”) or it 

can relate to (a lot of) new knowledge, (some of which is) outside of Kini(X), in which 

case it is more related to generativity. In the example of “a safer car, at very low cost”, 

P* requiring a very low cost encourages us to explore the costs of a safer car and 

methods of reducing the costs beyond classical cost saving measures (e.g., second-

hand renovation).  

This operation also illustrates the complexity of constraint generativity. 

Knowledge discovery independent of Kini(X)” is more readily related to (expansive) 

generativity than knowledge discovery related to Kini(X). However, this condition is 

insufficient because some elements of dKXPP* might still be related to Kini(X); e.g., “a 

safer car at very low cost” could relate to production in a country having low labor 

costs. This corresponds to the fact that against an a priori belief, P* = “at very low 

cost” is not necessarily an expansive partition, and knowledge injection and 

knowledge discovery driven by XPP*might only lead to knowledge in Kini(X). 

 

Hence each elementary process (K-injection, partition, K-discovery driven by 

XPP*) can both lead to expansive or restrictive generativity. This can be summarized 

in the figure 2 and the table below.  
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Figure 2: The three effects of a constraint P* on a design process, represented with C-K 

design theory (figure 2-a), and illustrated by an example (figure 2-b). Figure 2-a: Adding a 

constraint P* corresponds to a) injecting knowledge K(P*) =	dKP* - and this new knowledge can be 

either dependent (not generative) or independent (potentially generative), b) partitioning C0 = XP with 

P*- this partition can be restrictive (not generative) or expansive (potentially generative), and c) 

creating new knowledge dKXPP* stimulated by XPP* - and this new knowledge can be either dependent 

(non-generative) or independent (potentially generative). Figure 2-b: the design task being “a safer 

car”, the figure illustrates the effect of the constraint P*1 = “with lower cost” with knowledge 

injection (a1), restrictive partition (b1) and induced knowledge discovery (c1), these three effects 

resulting here in restrictive generativity; the figure also illustrates the effect of the constraint P*2 = 

“with biomimicry” with its knowledge injection effect (a2), its expansive partition effect (b2) and 

induced knowledge discovery (c2), resulting here in expansive generativity.  
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Table 1: C-K operations associated with a constraint P* and their potential generativity  

II.3. A Model That Contributes To Solving The Paradox Of Generative 

Constraints  

1) On the basis of the above model, the addition of a design constraint P* to a design 

task XP corresponds to three operations (i.e., partitioning, knowledge injection, and 

knowledge discovery) that each contribute (or not) to design generativity; i.e., they contribute 

to dK for the proof of XP. We can characterize the necessary condition for (expansive) 

generativity and (at least) one sufficient condition for generativity.  

• The necessary condition for (expansive) generativity is that one of the three 

operations (or a combination thereof) leads to dK independent of Kini in the sense 

that it cannot be deduced from/correlated to Kini) and is useful for a conjunction on 

XP.  

• One sufficient condition is that the constraint creates an expansive partition, and this 

expansive partition leads to dKXPP* independent of Kini and then to a conjunction.  

 

2) The model sheds light on several paradoxical properties of the effect of constraints 

on generativity.  

a) The model accounts for the aporia of a constraint—seen as a restriction—and 

(expansive) generativity. On the one hand, in the C-K model, the constraint P* 
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restrains the exploration to XPP* in C, and on the second hand, the C-K model also 

accounts for other related effects.  

• The constraint can open up new areas of knowledge dKP* and dKXPP* outside 

of Kini.  

• The new knowledge can open the door to new exploration XPP1…Pn, not 

necessarily under XPP* (e.g., in the case of creating crazy concepts). 

• When the constraint P* added to XP creates an expansive partition, it restrains 

the exploration to a certain direction, but this direction involves adding a 

surprising property (P* outside of Kini). The exploration is thus oriented in a 

specific direction that is original and new.  

b) The model accounts for the fact that a constraint is not systematically generative. This 

depends on how the three effects (of the partition, dKP*, and dKXPP*) are related to 

generativity (see Table 1), which means that it depends on the relationship between P*, 

Kini, and XP. Let’s give some quick illustrations (more detailed cases in the following 

part):  

• Simple case, illustrating “sufficient condition”: a constraint provokes an 

expansive partition (e.g.: “ultra lost cost”, text without “e”,…) that leads to 

discover new K (“ultra los cost” leads to new business models, new usages, 

new product/service architecture...; “text without ‘e’” leads to unusual words, 

new sentences…). Still the constraint can be “too strong” and leads to negative 

conjunction (“reduce cost of 90% is considered impossible”, write a text 

without vowels is impossible…) and hence no generativity.  

• A constraint brings new knowledge (“using knowledge from zoology” often 

plays this role) and this knowledge, if used, can lead to expansive partitions 
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and then to original results. This is how “biomimicry” appears as a generative 

constraint (see below). Still there are counterexamples: this apparently new, 

independent knowledge is finally restricted to dependent knowledge, eg: my 

car is a new Beetle, hence it already uses knowledge from zoology! 

• Note another interesting case that can be interpreted in this model, the so-

called “crazy concept” effect : in a design process under constraint P*, XPP* 

can be “crazy” in the sense that it is inspiring but doesn’t lead to any 

conjunction yet – Hence XPP* is an expansive partition and this partition 

provokes knowledge discovery dKXPP* that is independent of Kini. But this new 

knowledge doesn’t lead to a conjunction “under” XPP*. At first this 

configuration doesn’t lead to an expansive generativity. However this new 

independent knowledge is also now available to provoke other, alternative 

expansive partitions not under XPP* but still under XP and this new expansive 

partitions can lead to a conjunction and hence expansive generativity. One 

example: “XP= a safer car; P*= at no cost” could lead to investigate alternative 

business models (with insurance companies, with employers, with cities,…) 

that won’t make possible a safer car ‘at no cost’ but will make possible 

surprising types of ‘safer car’ (with new insurance contracts, or with new urban 

development and planning…). It shows that the critical issue is in the 

discovery of independent knowledge.  
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III.  Interpreting Experiments With A C-K-Based Model Of Constraint 

Generativity  

We now illustrate how the model of a generative constraint corresponds to empirical 

experiments and how it helps characterize the management of constraints to control 

generative effects, ie both to achieve generativity or conversely, occasionally, to intentionally 

avoid generativity.  

We review three series of (published) experiments conducted in different contexts, 

namely laboratory experiments on ideation and defixating leadership, in silico experiments on 

evolutionary algorithms (EAs), and real-life experiments on biomimicry.  

III.1. Constraints In Creativity Cognition: Experiment On Defixation 

Fixation is recognized as a critical cognitive phenomenon that impedes generativity 

(Finke et al. 1992; Ward et al. 1999; Crilly 2015). A series of works have contributed to 

identifying ways to overcome fixation by adding a specific instruction or constraint in the 

ideation task (Agogué et al. 2014a; Agogué et al. 2015; Agogué et al. 2014b; Camarda et al. 

2021; Ezzat et al. 2018; Ezzat et al. 2017a). We review two series of experiments to show 

how their results correspond to the prediction obtained with the C-K based model of 

generative constraint. In each case experiments are done as follows: a “leader” gives to n 

ideators working separately the design task: “propose as many original solutions to make it 

happen that a hen’s egg launched from a height of 10 meters does not break” and this 

common instruction can be modified with specific additional constraint, as detailed below 

(with ni individual in each group i with specific instruction)(detailed results can be found in 

the publications mentioned below) – based on a reference, it is possible to identify the fixation 

area associated to the design task; the ideation process results in ideas proposed by the ni 
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individuals of the group i with instruction i, the distribution of ideas is analyzed to get a score 

of originality that is associated to the number of ideas that are considered out of the fixation 

area. Hence an experimental link between the constraint and the ideas out of th fixation areas.  

The correspondence between this series of experiment and the model is as follows: the 

use of design theory in the field of cognitive psychology (Agogué et al. 2014a; Camarda et al. 

2021; Ezzat et al. 2017a) has led to the distinguishing (see Figures 3 and 4) of knowledge that 

is “easily accessible” (Kfixation, considered as equivalent to K that is dependent of Kini, non-

shaded area in K) and leads to ideas in fixation (non-shaded area in C) and knowledge that is 

“less accessible” (Kdefixation, considered as independent of Kini, shaded area in K) and is 

associated with dK and leads to ideas in defixation (shaded area in C). The initial concept is 

defined by reference to initial knowledge Kini.  

We analyze the correspondence between experimental results and the prediction coming 

from the model of generative constraint:  

• Experiments with defixating examples: three groups are made. In group 1, the 

instruction is “propose as amny original solutions to make it happen that a hen’s egg 

launched from a height of 10 meters does not break”; in group 2, this instruction is 

completed with “as original as tame an eagle to catch the egg during its fall” ; in group 

3, the initial instruction is completed with “as original as using a parachute to slow the 

fall of the egg” (Agogué et al. 2014a). Results are: group 2 is significantly more 

original than group 1 that is significantly more original than group 3.  

One can interpret this experiment with our ‘constraint’ framework: the 

constraint is either “as original a using a parachute” or “as original as taming an 

eagle”. In the ‘parachute’ case, knowledge injection dKP* is in the dependent area, 

XPP* is not expansive and knowledge discovery dKXPP* (learning driven by XPP*) is 
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also in dependent area. Therefore, the model predicts no expansive generativity, and 

this corresponds to the experimental model. In the “eagle” case, knowledge injection 

dKP* is in the independent area, hence XPP* is an expansive partition and knowledge 

discovery dKP* driven by XPP* is (very likely) in independent area. Hence the model 

predicts expansive generativity (see table 2 below), and this corresponds to the 

experimental model.  

Hence these experiments confirm the necessary and sufficient conditions: the 

‘parachute’ case confirms necessary condition (by negation); the ‘eagle’ case confirms 

the sufficient condition.  

 

 

 

Figure 3: Fixation/defixation effects on idea generation. Example of a parachute: dKP* is in 

Kfixation, the partition XPP* is not expansive, dKXPP* is in Kfixation, Example of taming an eagle: dKP* is 

in Kdefixation, XPP* is an expansive partition, dKXPP* can be in Kdefixation (and also in Kfixation).  
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Table 2: generative and non-generative constraints in creative cognition experiments with 

examples 

 

• Experiments with negations: It is known (from previous experiments) that the 

instruction “make it happen that a hen’s egg launched from a height of 10 meters does 

not break” leads to fixations in three categories, namely protecting the egg, dampening 

the shock, and slowing the fall (e.g., with a parachute). Three groups are made. In 

group 1 (reference), the instruction is “propose as many original solutions to make it 

happen that a hen’s egg launched from a height of 10 meters does not break”; in group 

2, this instruction is completed with “without a parachute” (i.e., the negation of an 

example); in group 3, the initial instruction is completed with “without slowing the 

fall, nor damping the shock, nor protecting the egg” (i.e., the negation of an fixation 

categories). Results are: group 3 (category negation) is significantly more original than 

group 2 (example negation) and the group 1 (reference) and there is no difference 

between these two latter groups (Ezzat et al. 2018). 

One can interpret this experiment with our ‘constraint’ framework (see Figure 4 

and table 3): the “example negation” constraint does not provide defixating knowledge 

and is not an expansive partition (because there are still many solutions that are “not a 

parachute” but are still in the fixation) hence the model predicts that it won’t be 

generative – this is in line with the empirical result; the “category negation” constraint 

is an expansive partition (the constraint blocks every (known) fixation path) and leads 

to generativity by pushing ideators to (re)discover knowledge outside their fixation, 

hence the model predicts that the experiment will lead to expansive generativity and 

this corresponds to empirical results. This experiment illustrates the sufficient 

condition: an expansive partition that leads to dK outside of Kini. 
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Note that dKP* does not come from defixation knowledge (contrary to the 

‘eagle’ example above). This implies that the constraint setter (a sort of constraint 

manager) does not need to dispose of defixation knowledge, which makes a critical 

difference with the example of the eagle.  

 

 

Figure 4: Effect of a negation constraint on idea generation. The negation of an example 

leads to staying in Kfixation. The negation of all fixation categories leads to an expansive partition and 

knowledge discovery in Kdefixation.  

 

Table 3: generative and non-generative constraints in creative cognition experiments with 

negation. 

 

III.2. Constraints That Make Design Software More Generative 

There has long been the logic of a constraint in computer science, where constraints are 

used for their restrictive role to support convergence toward an acceptable objective or to 

select among several possible solutions (e.g., in ridge regression). Several algorithms work as 
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heuristics, where constraints allow a satisfactory optimum to be found. A famous example is 

the evolutionary algorithms (EA) that provide a solution to problems without continuity and 

hence without gradients (Deb et al. 2002) by “constraining” a trial-and-error process by 

selecting “elite” solutions and organizing mutation and hybridization among the selected 

elites. Recently, in this field of the EA (which is also considered an example of so-called 

generative algorithms (Byrne et al. 2014; Caetano et al. 2020; Hatchuel et al. 2021b; 

Mountstephens and Teo 2020)), new algorithms that provide greater generativity (i.e., more 

varied and higher optima) have been proposed; in particular, the novelty search with local 

competition (NSLC) (Lehman and Stanley 2008; Pugh et al. 2016; Lehman and Stanley 2011)  

and map elites (ME) (Cully et al. 2015; Fioravanzo and Iacca 2019; Mouret and Clune 2015).  

We now analyze how the generativity performances of these algorithms, NSLC and 

ME, can be explained by the necessary condition and sufficient condition that we identified 

with a C-K based model of constraint generativity. 

The adoption of design theory in the field of EAs (Hatchuel et al. 2021a) leads us to 

consider Kini = {genes that can combine into specific phenotype f1} and C0 = “find a 

genotype that optimizes f1 (X=genotype; P=max f1 )”. In Kdependent, we have knowledge that 

is accessible using the classical EA (hence Kdependent corresponds to Kwith classical EA - non-

shaded area in K)) and leads to genotypes with optimal f1 obtained with the classical EA 

(non-shaded area in C) and we have Kindependent that is knowledge beyond this knowledge 

accessible with the classical EA (hence Kindependent corresponds to Kbeyond classical EA - shaded 

area in K)  and that leads to genotypes with new, possibly better optima for f1 (shaded area in 

C).  

• A novelty search with the local competition (NSLC) EA implies that the algorithm 

keeps interesting genotypes if their phenotype varies one from the other (i.e., the 
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novelty criterion, which differs from the usual f1 optimizing criterion and is not 

present initially in the classical EA algorithm). This novelty criterion leads to the 

investigation of original paths in C and hence the formulation of the genotypes already 

obtained with the classical EA as well as new genotypes that are also ‘acceptable’ in 

f1 optima (local optimum) but with original f2. Even more: actually f1-optima 

obtained with EA corresponded to specific f1 values, and for these specific f2 values, 

NSLC will finally discover genotypes with higher f1. Hence NSLC leads to expansive 

generativity by comparison with classical EA.  

• The ME EA also introduces an alternate f2 phenotypical criterion (not present for the 

classical EA, such that dKP* is outside Kwith_classical_EA) and organizes the systematic 

exploration by selecting f1 elites for each specific niche defined by f2 intervals. The 

ME EA systematically explores genotypes along f2 and thus, in C, XPP* opens a range 

of individuals (one so-called elite individual with phenotype (f1, f2) for each niche 

defined by one interval along f2) and in K it corresponds to the exploration of more 

genotypes beyond the classical EA (dKXPP*). Just like NSLC, ME will result in 

genotypes already obtained with the classical EA as well as new genotypes that are 

also ‘acceptable’ in f1 optima (local optimum) but with original f2. and ME will also 

results in better f1-optima in the f2-regions already explored by classical EA. The 

exploration along f2 is more systematic with ME and this results in more expansive 

partitions: new solutions in new f2-regions as well as better optima in known f2-

regions.  

ME and NSLC EA thus create more varied and more f1-optimal individuals. 

This increase in generativity corresponds to three factors (see table 4 below): 

knowledge injection outside of Kwith_classical_EA (dKP* provided by the f2 parameter), the 
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possibility of expansive partitions (for certain values of f2 not already explored by the 

classical EA – this process is reinforced in ME that systematically explore f2), and 

knowledge discovery (dKXPP* guided by f2). ME and NSLC EA illustrate a sufficient 

condition: if f2 is well chosen, then it is possible that certain f2 intervals correspond to 

expansive partitions and hence to dKXPP* outside of Kwith_classical_EA.  

 

 

 

Figure 5: Generativity with NSLC and ME EAs. ME and NSLC EA introduce new 

phenotypical criteria f2 in K. These new phenotypical criteria increase the chance of provoking an 

expansive partition in K and thus the chance of discovering new knowledge. The range of f2 is 

explored in a more systematic way in ME than in NSLC, resulting in more expansive generativity.  

 

Table 4: constraints that make evolutionary algorithms more generative.  
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III.3. Biomimicry As A Generative Constraint 

Several empirical studies have been conducted to analyze and experimentally determine 

mechanisms through which biomimicry can increase generativity. Some of these studies were 

based on C-K theory (Freitas Salgueiredo and Hatchuel 2016; Nagel et al. 2016; Pidaparti et 

al. 2020; Prabaharan et al. 2019). Freitas Salgueiredo & Hatchuel (2016) showed that 

biomimicry stimulates creativity while adding very little knowledge (dKP* = ‘biomimicry’ ≅ 

∅) but creating an expansive partition in C (XP “with biomimicry” adds an unusual 

partitioning attribute to XP), which might lead to dKXPP* outside of knowledge usually used to 

solve XP (hence independent). The authors showed that the critical operation is in dKXPP*. 

Knowledge discovery under “biomimicry” could provide original, relevant knowledge outside 

of knowledge usually used by designers (independent). However, it could also remain sterile, 

without bringing any relevant bio-related knowledge or only finding bio-related knowledge 

that was actually already related to Kini (dependent). This confirms that biomimicry can meet 

the necessary condition of generative constraint iff knowledge discovery dKXPP* uncovers new 

knowledge outside of Kini (see table 5 below) 

On the basis of this result, Nagel et al (Nagel et al. 2016; Pidaparti et al. 2020; 

Prabaharan et al. 2019) experimented on many ways to manage this critical dKXPP*, based on 

C-K patterns and clear access to bio-knowledge during the design process. The results of the 

experiments confirm that a good management of dKXPP* is critical for making biomimicry act 

as a generative constraint.  
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Figure 5: Biomimicry as a generative constraint. dKP* is outside classical knowledge (hence 

independent) but it might be quasi-empty. P* = “with biomimicry” is an expansive partition. However, 

it is uncertain whether dKXPP* is outside classical knowledge (independent).  

 

Table 4: how biomimicry can be interpreted as a generative constraint.   

 

IV.  Solving The Paradox Of Generative Constraints—Managerial 

Implications 

IV.1. Contribution: Conditions Of A Generative Constraint  

On the basis of design theory and with confirmation in a series of experiments, a design 

constraint P* added to a design task “there is an X with property P” (initially having an 

unknown relation to knowledge on X, Kini(X), and knowledge on P, Kini(P)) corresponds to 

three operations (i.e., partitioning, knowledge injection, and knowledge discovery) that can 

each contribute (or not contribute) to design generativity. Partitioning can be expansive (or 
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restrictive), knowledge injection and knowledge discovery can be outside of (independent) 

knowledge related to Kini(X) and knowledge related to P Kini(P) (or correlated to Kini(X) or 

Kini(P)).  

A necessary condition for a generative constraint is that independent knowledge is 

produced in the design process “under constraint” and the model shows and the experiments 

confirm that this can happen through one of the three mechanisms – or said formally: one of 

the three operations leads to dK independent of Kini(X) and K(P) and leads to a conjunction. A 

sufficient condition for the generative constraint is that the constraint creates an expansive 

partition and this expansive partition leads to knowledge discovery dKXPP* independent of 

Kini(X) and Kini(P). Both conditions have been confirmed by empirical studies in very 

different contexts (lab experiment on defixating leadership, in silico experiments on 

generative algorithms, real life experiment on b.  

The above result reinforces results on constraints and creativity mentioned in the 

introduction.  

• Frequent inconclusiveness? The model explains that a given constraint type can be 

either generative or restrictive depending on whether the constraint P* inject 

independent knowledge dKP*, provokes expansive partition and leads to knowledge 

discovery dKXPP*. independent of Kini.  

• Plausibility of a U-shaped relation? In specific cases, the conditions result in an 

inverted U-shaped relation (eg cost: low cost / strongly lower cost / no cost: this 

constraint will correspond respectively to restrictive partition / expansive partition / 

negative conjunction). However, the above result demonstrates that the relation 

depends also on K-discovery, which can explain a deviance from U-shape relation: 

“lower cost” constrain can become generative it leads to discover independent 
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knowledge; respectively “no cost” can also become generative if it leads to 

independent knowledge.  

• Constraint aporia? The constraint restricts the exploration (XPP*), but this restriction 

can be associated with many openings in the design process: a) knowledge injection 

and discovery can open up new knowledge, b) this new knowledge can open up new 

explorations in the C-space outside the “restriction” imposed by the constraint P*, and, 

c) last but not least, the restriction itself (XPP*) being an expansive partition imposes 

an unexpected property on X, an unexpected property that is, in itself, an opening..  

IV.2. Implications For Managing Constraints For Generativity 

The above results have multiple implications in management and education. As seen in 

empirical cases, a better understanding of the generative constraint can support defixating 

leadership, help develop efficient biomimicry-driven design processes, and even help identify 

relevant algorithms for generative design tools.  

More deeply, the results correspond to managerial challenges.  

1) First: managing knowledge injection by the constraint. Managing the generative 

impact of a constraint consists in evaluating how this constraint injects independent 

knowledge. There are cases where teachers or managers know the team well enough to 

anticipate the dependent knowledge associated to a certain design task – in this case it might 

be relatively easy to identify constraints that will bring independent knowledge – just as 

biomimicry does for engineering students. Still in some cases, the team is too large or too 

unknown, or the design task itself is too surprising and the professor / the manager is not able 

to predict what is ‘dependent’ knowledge for the team. This will then require complex 

investigations, (organizational) learning processes, and organizational procedures. More 
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research would be needed to explore in more depth the various ways and means to accomplish 

this management action.  

2) Second: managing knowledge discovery induced by the design exploration under the 

constraint. Managing the knowledge creation dKXPP* process stimulated by the constraint 

consists in producing independent knowledge inspired by the chimera XPP*. For managers or 

for teachers, it consists in supporting the learning / exploratory processes induced by a 

constraint, hence providing ways an means to learn/produce knowledge in unexpected 

directions – eg. mechanical engineering students might begin to learn on biology. This might 

sound simple in experimental situations, still it appears that in real life situations, this type of 

learning is all the more complex that designers tend to rely on learning devices that are related 

to what they already know (same discipline, same skills,…) whereas the managerial 

recommendation exactly means to learn in new independent areas (new devices, new experts, 

new networks…). Research works have shown that some software devices might enhance this 

process learning independent knowledge (e.g., Arrighi et al., 2015)) or this learning process 

would require specific organizational processes to help actors quickly absorb external 

knowledge or create it (Klasing Chen 2015; Plantec et al. 2021).  

3) The above mentioned managerial recommendations are not easily realized – this is 

probably not surprising when one remembers the large inconclusiveness on the management 

of generative constraint: the model finally predicts that efficient management of generative 

constraint requires strong insights on available knowledge and the independent knowledge to 

be acquired/created. This would be all the more difficult in complex, multi-disciplinary teams 

where available knowledge and missing, independent knowledge are not easily identifiable. 

Yet the value of the recommendation to take care of ‘independent knowledge’ associated to a 

constraint might precisely be in the fact that it is not self-evident and intuitive and call for 
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further research to be more easily implemented in management procedures and managerial 

behavior.  

IV.3. Discussion: Generalizing The Logic Of Generative Constraints Beyond 

The Design Task 

This chapter addresses the generative constraint in the case of the so-called task 

constraint. How can one extend the results to a so-called situation constraint (i.e., a constraint 

relating to a design situation), such as procedural constraint, team constraint, or organizational 

constraint?  

Even if the model is described from the perspective of P* being a “task variable” 

(Haught-Tromp, 2017), the model can be generalized with P* relating to a so-called situation 

constraint (or also contextual constraints such as budget, time, organization, etc…), as long as 

the situation constraint can be translated into a P* added to the design task. 

We give the following examples. 

• A design process with a procedural constraint “rely on user involvement” readily leads 

to P* = “relying on user involvement”. 

• A design process that follows the set-based design process, in which several solutions 

have to be designed at each stage, can easily be translated into P* = “design always 

several solutions at each stage” (see (Sobek 1996; Sobek et al. 1999)). 

• A design process where the design team comprises only women (a real (and excellent) 

case study of Volvo by Backman & Börjesson (Backman and Börjesson 2006)) can 

easily be translated into P* = “designed by women”. 

In these cases, three operations should be considered. 

• Does the constraint correspond to an expansive partition? For the example P* = “with 

user involvement”, in businesses where user involvement is frequent, the answer is no. 
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In businesses where user involvement is rare, this constraint can be expansive 

(depending on the knowledge on the user).  

• Does the constraint inject new knowledge? In the example P* = “design at least two 

alternatives at each stage”, the answer is no. Still, this constraint could have generative 

effects relating to the two other operations.  

• Does the constraint lead to the discovery of new knowledge? The example P* = 

“designed by women” might or might not lead to the discovery of new knowledge (as 

studied by Backman et al.).  

Self-evidently sufficient and necessary conditions also apply in these cases.  

 

IV.4. Opening: Preservation Constraint And The Design Of Creation Heritage 

Are there constraints that inherently kill generativity? Even if it is difficult to address 

this question in general terms, the question at least leads us to wonder whether generativity 

can be limited or, conversely, enhanced by a constraint of preservation. This can be a 

constraint of “tradition preservation” but the question can also be more general in these times 

of environmental transition, where designers are looking for creative sustainable solutions that 

address grand challenges and innovation is often deeply related to preservation; e.g., 

preserving natural resources, preserving biodiversity, preserving a way of life, preserving 

health, preserving wealth, or preserving mobility. In such cases, we are used to considering 

that the constraint is in direct conflict with innovation and creation in that one can only be 

achieved at the cost of the other. But is this intuitive answer really correct? What does the 

model teach us about this?  

a) The model clarifies why the “preservation” constraint is difficult to handle. First, 

knowledge injection is difficult; i.e., do we know what has to be preserved ex ante. Second, it 
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is not easy to see how to deal with the other two operations: partitioning (will “with 

preservation” act as a restrictive or expansive partition?) and knowledge discovery (what will 

be discovered thanks to the preservation constraint?).  

b) However, these difficulties also present interesting ways to deal with such a 

constraint. It appears that “with preservation” can precisely lead to surprising “creative 

partitions” (e.g., “a disruptive solution to be made compatible with preservation”; see 

Carvajal Pérez et al., 2020; Hatchuel et al., 2019) and interesting knowledge discovery (what 

has to be preserved will actually be learnt and discovered while walking; see Harlé et al., 

2021). We thus see how the model inspires the creation of new ways to deal with constraints. 
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