Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Computer Methods in Applied Mechanics and Engineering Année : 2022

Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches

(1) , (2) , (3) , (4, 5, 6) , (7)
1
2
3
4
5
6
7

Résumé

Computing the sensitivity vector in the traditional first order reliability method may provide inaccurate reliability outcomes for discrete performance functions and inefficient computation burden for high-dimensional problems. In this study, two improved particle swarm optimization algorithms are proposed to enhance the convergence rate with global optimal results during the structural reliability analysis. The abilities for convergence speed and global convergence of the particle swarm optimization algorithm are improved using a novel hybrid method called particle swarm optimization-based harmony search algorithm (PSO–HS), and enhanced particle swarm optimization (EPSO). The proposed methods use a dynamic self-adaptive term to execute the local adjusting process. Using twelve numerical-based engineering problems, the structural reliability frameworks developed based on modified versions of particle swarm optimization algorithms are compared to numerous FORM algorithms and the current metaheuristic methods. Results indicated that the novel proposed methods using the improved PSO algorithms are more robust and efficient than the analytical FORM methods for solving high-dimensional engineering problems. Furthermore, compared to the previous metaheuristic approaches, the suggested methods enabled faster convergence.
Fichier non déposé

Dates et versions

hal-03907411 , version 1 (20-12-2022)

Identifiants

Citer

Shun-Peng Zhu, Behrooz Keshtegar, Mohamed El Amine Ben Seghier, Enrico Zio, Osman Taylan. Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches. Computer Methods in Applied Mechanics and Engineering, 2022, 393, pp.114730. ⟨10.1016/j.cma.2022.114730⟩. ⟨hal-03907411⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More