
HAL Id: hal-04080717
https://minesparis-psl.hal.science/hal-04080717

Preprint submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Interior-Point Solver for Block-Structured
Nonlinear Programs on SIMD/GPU Architectures

François Pacaud, Michel Schanen, Sungho Shin, Daniel Adrian Maldonado,
Mihai Anitescu

To cite this version:
François Pacaud, Michel Schanen, Sungho Shin, Daniel Adrian Maldonado, Mihai Anitescu. Parallel
Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU Architectures. 2023.
�hal-04080717�

https://minesparis-psl.hal.science/hal-04080717
https://hal.archives-ouvertes.fr

Parallel Interior-Point Solver for Block-Structured Nonlinear

Programs on SIMD/GPU Architectures

François Pacauda, Michel Schanenb, Sungho Shinb, Daniel Adrian Maldonadob,
Mihai Anitescub

a Centre Automatique et Systèmes, Mines Paris - PSL, Paris, France; b Mathematics and
Computer Science Department, Argonne National Laboratory, Lemont, USA

ARTICLE HISTORY

Compiled May 10, 2023

ABSTRACT
We investigate how to port the standard interior-point method to new exascale
architectures for block-structured nonlinear programs with state equations. Compu-
tationally, we decompose the interior-point algorithm into two successive operations:
the evaluation of the derivatives and the solution of the associated Karush-Kuhn-
Tucker (KKT) linear system. Our method accelerates both operations using two
levels of parallelism. First, we distribute the computations on multiple processes
using coarse parallelism. Second, each process uses a SIMD/GPU accelerator lo-
cally to accelerate the operations using fine-grained parallelism. The KKT system
is reduced by eliminating the inequalities and the state variables from the corre-
sponding equations, to a dense matrix encoding the sensitivities of the problem’s
degrees of freedom, drastically minimizing the memory exchange. We demonstrate
the method’s capability on the supercomputer Polaris, a testbed for the future exas-
cale Aurora system. Each node is equipped with four GPUs, a setup amenable to our
two-level approach. Our experiments on the stochastic optimal power flow problem
show that the method can achieve a 50x speed-up compared to the state-of-the-art
method.

1. Introduction

Solving complex engineering problems often resorts to the solution of large-scale block-
structured nonlinear programs. As such, there has been a long interest in designing
efficient nonlinear optimization algorithms, particularly by using parallel computing.
Parallelism can happen at two levels. At first, coarse parallelism splits the program
into large computational chunks, usually dispatched to multiple processors using a
message-passing interface in distributed memory. In this paradigm, the parallel al-
gorithm is designed to minimize the communication between the different processes.
In a complementary direction, fine-grained parallelism breaks down the program into
small tasks, fast to compute in shared memory. This method requires a large num-
ber of processors to be efficient, and it is usually better on SIMD architectures with
low communication overhead, as provided by Graphical Processing Units (GPUs). In
the mathematical optimization community, coarse parallelism has traditionally been
used to solve large-scale block-structured optimization problems, as encountered in
dynamic or stochastic nonlinear programs. On the contrary, fine-grained parallelism
has gained attraction only recently, with the renewed interests for machine learning

applications and stochastic gradient algorithms. In this work, we combine coarse and
fine-grained parallelism to solve block-structured nonlinear problems on new exascale
architectures, where the solution algorithm is streamlined on different GPUs using
CUDA-aware MPI.

1.1. Literature review

In his pioneering work [39, 40], Robert Schnabel identified three practical approaches
to run optimization algorithms in parallel: (i) parallelize the function evaluations; (ii)
parallelize the linear algebra; and (iii) parallelize the optimization algorithm itself.

The first attempt to parallelize the evaluations has been to streamline the com-
putation of the derivatives using finite-differences [29]. Soon, it has been noted that
parallelizing the forward pass in automatic differentiation (AD) is also straightforward,
provided that we can propagate the tangents (encoding the first-order sensitivity) in
parallel [20]. Unfortunately, doing the same in the reverse pass is not trivial, as ad-
joining a mutable code leads to race conditions (e.g., every read becomes a write
operation). This has led to extensive research on adapting automatic differentiation
to parallel environments [4, 19, 27]. Now, most state-of-the-art differentiable tools em-
ploy a Domain Specific Language (DSL) constraining the user to specific differentiable
operations. In particular, this approach has been adopted mainly in machine learning,
leading to the development of fast AD libraries efficiently generating the derivatives
efficiently on hardware accelerators such as GPUs or TPUs [3, 32].

The parallelization of linear algebra is usually more involved, as most large-scale op-
timization methods fall back on the solution of sparse indefinite Karush-Kuhn-Tucker
(KKT) systems [30]. In the 1980s, preliminary results were obtained by running itera-
tive methods in parallel, using block-Krylov [36] or block-truncated Newton methods
[28]. However, block iterative algorithms are quickly limited by the lack of generic
preconditioners for KKT systems. The 1990s witnessed the emergence of the interior-
point methods (IPM), together with the development of large-scale sparse direct linear
solvers [12, 38]. In IPM, a significant portion of the time is spent solving a sequence
of (indefinite) KKT systems, hence the method directly benefits from efficient sparse
linear solvers able to run in parallel [1, 13]. In the 2000s, it was shown that, for block-
structured optimization problems as we consider here, the layout of the optimization
problem can be exploited further in a Schur complement approach to solve the Newton
step in parallel [2, 9, 17, 22, 33, 44, 45]. These developments led to the development
of mature decomposition-based parallel nonlinear solvers for scenario-based problems
in the 2010s [8, 16, 34, 41, 46].

Eventually, running an optimization algorithm fully in parallel generally requires a
subtle combination of (i) and (ii), often devolving to a software engineering problem.
The challenge is to evaluate the derivatives and solve the resulting KKT system each in
parallel; all this while minimizing the communication between the different processes.
This has led to the development of different prototypes for MPI-parallel modelers [10,
21, 34, 43], most of them extending a specific AD backend [5, 14, 15]. Such approaches
have been successfully applied to solve large-scale block-structured nonlinear problems,
as encountered in stochastic programming and dynamic optimization.

2

1.2. Contributions

In this article, we introduce a new parallel algorithm to solve block-structured non-
linear programs involving state equations on exascale supercomputers. Our algorithm
uses the parallel interior-point solver MadNLP [41], using two layers of parallelism to
streamline both the evaluation of the derivatives and the solution of the KKT system.
This framework targets new exascale supercomputers, where each node is assigned
to multiple GPUs connected with a unified memory (designed to have fast memory
exchange between the different GPUs).

We demonstrate the capability of the algorithm on scenario-based power flow prob-
lems (block-OPF), here formulated as two-stage stochastic nonlinear programs. The
scenarios can be stochastic or represent contingencies (which can be interpreted as
stochastic outcomes with uniform distribution), as is the case of the very widely used
security-constrained AC optimal power flow (SC-ACOPF) problem [7]. SC-ACOPF is
one of the core analyses undertaken in the planning, operational planning, and real-
time operation of transmission systems [7]. SC-ACOPF is run several times a day by
many operators in the US and the world. For brevity, we will refer to such problems
as stochastic.

The block structure of such problems is given by the different scenarios associ-
ated with the stochastic problem, leading to potential parallelism in both the evalu-
ation of the derivatives and the solution of the resulting block-angular KKT system.
The parallel solution of the block-OPF problem with a Schur complement approach
has been studied extensively both with PIPS-NLP [8, 37] (multiprocessing) and with
Beltistos [23, 25] (multiprocessing + factorization of the dense Schur complement on
the GPU). Compared to the state-of-the-art solver Beltistos, our approach carries out
almost all computation on the GPUs including a global CUDA-aware MPI reduction,
from the evaluation of the derivatives to the assembling of the Schur complement. We
test our implementation on the pre-exascale supercomputer Polaris, where each node
is equipped with 4 A100 GPUs, and we solve block-OPF problems with up to 9,251
nodes.

2. Problem statement

In systems engineering, it is common to encounter optimization problems with rela-
tively few degrees of freedom – ”controls”. Then, the goal is to appropriately fix the
values for the degrees of freedom, e.g., by minimizing a given operational cost while
satisfying the physical equations of the problem. In that context, the internal state of
the system is described by a state variable x ∈ Rnx , whose values depend on the cur-
rent controls u ∈ Rnu associated with the problem’s degrees of freedom. If the problem
is well-posed, this translates to the state equation g(x, u) = 0, where the function g
exhibits the physical structure of the problem (e.g., a differential equation encoding a
dynamics, or a nonlinear network flow associated with static balance equations). When
the system faces uncertainties, it is often appropriate to choose a control u feasible
under a finite set of conditions (or scenarios). That is, the control u must satisfy N
different state equations

gi(xi, u) = 0 for all i = 1, · · · , N, (1)

3

where the state xi now depend on the current scenario i. The variables xi can be assim-
ilated into a recourse variable. The N functions g1, · · · , gN define the block structure
of the problem.

2.1. Block-structured nonlinear programs

In addition to satisfying the N state equations (1), we aim at minimizing the average
operating costs on the N different scenarios. The corresponding problem formulates
as a two-stage nonlinear program, which, in our case, is a nonlinear program with
partially separable structure [11]:

min
x1,··· ,xN ,

u

N∑
i=1

fi(xi, u) s.t.


xi ≥ 0 , u ≥ 0

gi(xi, u) = 0 ,

hi(xi, u) ≤ 0 ,

∀i = 1, · · · , N , (2)

with fi : Rnx × Rnu → R, gi : Rnx × Rnu → Rnx , hi : Rnx × Rnu → Rm smooth
functions encoding the objective, the state equations, and the operational constraints,
respectively. We note that the number of variables (N × nx + nu) and constraints
(N × (m+ nx)) are linearly proportional to the number of blocks N .

In addition, if we introduce local control variables u1, · · · , uN with the additional
coupling constraint u1 = · · · = uN = u, we get a problem with a separable structure,
solvable using the primal decomposition method; at the expense of increasing the
search space [11, 35].

By introducing slack variables s1, · · · , sN , we rewrite (2) in standard form:

min
x1,··· ,xN ,
s1,··· ,sN ,

u

N∑
i=1

fi(xi, u) s.t.


u ≥ 0 , xi ≥ 0 , si ≥ 0

gi(xi, u) = 0 ,

hi(xi, u) + si = 0 ,

∀i = 1, · · · , N . (3)

We define yi ∈ Rnx the multipliers (or adjoints) associated to the equality con-
straints gi(xi, u) = 0, zi ∈ Rm the multipliers associated to the operational constraints
hi(xi, u) + si = 0, as well as λ, κi, νi the three multipliers associated to the respective
bound constraints u ≥ 0, xi ≥ 0, si ≥ 0. The Lagrangian associated to (3) is:

L(x, u, s; y, z, λ, µ, ν) :=

N∑
i=1

[
fi(xi, u) + y>i gi(xi, u) + z>i

(
hi(xi, u) + si

)
− κixi − νisi

]
− λu , (4)

with x := (x1, · · · , xN), s := (s1, · · · , sN), y := (y1, · · · , yN), z := (z1, · · · , zN). To
simplify the notations, we define the extended objective function and the extended
constraints:

f(x, u) :=
∑
i=1

fi(xi, u) , g(x, u) :=

 g1(x1, u)
...

gN (xN , u)

 , h(x, u) :=

 h1(x1, u)
...

hN (xN , u)

 .

4

We assume the functions f, g, h are twice differentiable. We denote

H = ∂(x,u)h(x, u) ∈ RNm×(Nnx+nu) Jacobian of the inequality cons.

G = ∂(x,u)g(x, u) ∈ RNnx×(Nnx+nu) Jacobian of the equality cons.

W = ∇2
(x,u)L(x, u, s; ·) ∈ R(Nnx+nu)×(Nnx+nu) Hessian of Lagrangian.

2.2. Interior-point method

The interior-point method (IPM) [30, Chapter 19] is a classical approach to solve (3).

2.2.1. KKT system

The Karush-Kuhn-Tucker (KKT) equations associated to (3) can be expressed as

∇xfi + (Gi
x)>yi + (H i

x)>zi − κi = 0, ∀i = 1, · · · , N (5a)

N∑
i=1

(
∇ufi + (Gi

u)>yi + (H i
u)>zi

)
− λ = 0, (coupling) (5b)

zi − νi = 0, ∀i = 1, · · · , N (5c)

gi(xi, u) = 0, ∀i = 1, · · · , N (5d)

hi(xi, u) + si = 0, ∀i = 1, · · · , N (5e)

Xiκi = 0, (xi, κi) ≥ 0, ∀i = 1, · · · , N (5f)

Siνi = 0, (si, νi) ≥ 0, ∀i = 1, · · · , N (5g)

Uλ = 0, (u, λ) ≥ 0, (5h)

where U = diag(u), Xi = diag(xi), Si = diag(si).
The interior-point method uses a homotopy parameter µ > 0 to replace the

complementarity constraints (5f)-(5g)-(5h) by the smooth approximations: Xiκi =
µenx

, Siνi = µem, Uλ = µenu
(en being the vector of all ones of dimension n). The

resulting (smooth) system of nonlinear equations can be solved iteratively using New-
ton method, where at each iteration, the descent direction is updated by solving the
following augmented linear system:

W + Σp 0 G> H>

0 Σs 0 I
G 0 0 0
H I 0 0



pd
ps
py
pz

 = −


r1

r2

r3

r4

 (6)

with r1 =

[
∇xf +G>x y +H>x z − µX−1enx

∇uf +G>u y +H>u z − µU−1enu

]
, r2 = z − µS−1em, r3 = g(x, u), r4 =

h(x, u) + s. The primal descent direction pd decomposes as pd = (px1
, · · · , pxN

, pu).

2.2.2. Block angular structure

The linear system (6) is sparse and symmetric indefinite, and can be factorized using
the Bunch-Kaufman algorithm. However, it is often beneficial to exploit its block-
angular structure. Indeed, both the Hessian of the Lagrangian and the Jacobians have

5

a block-angular structure, given as

W =


Wx1x1

Wx1u

. . .
...

WxNxN
WxNu

Wux1
. . . WuxN

Wuu

 , G =

G
1
x1

G1
u

. . .
...

GN
xN

GN
u

 .

By reordering the linear system (6), we can expose the block-angular structure of the
KKT system as: 

A1 B>1
. . .

...
AN B>N

B1 . . . BN A0

 (7)

with

A0 = Wuu, Ai =


Wxixi

+ Σxi
0 G>xi

H>xi

0 Σsi 0 I
Gxi

0 0 0
Hxi

I 0 0

 , Bi =

 Wxiu

(Gi
u)>

(H i
u)>

> .

The block-angular structure (7) can be exploited to solve the KKT linear system in
parallel using a Schur complement approach. In that case, the submatrices Ai can be
factorized independently to assemble the Schur complement in parallel [8].

2.3. Condensation and reduction

Instead of reordering the augmented KKT system (6) as a block angular matrix (7),
we propose an alternative approach based on successive condensation and reduction
of the KKT system, following the method introduced in [31]. If the structure is well-
defined, we show that we can condense the KKT system (6) to a dense matrix with
size nu × nu in two steps: first, by removing the inequality constraints in (6), then by
exploiting the structure of the equality constraints to reduce the condensed system to
a dense matrix. The condensation and reduction steps are illustrated in Figure 1.

2.3.1. Condensation step

The condensation step allows reducing the size of the KKT system drastically if the
number of inequality constraints is large1.

Proposition 2.1 (Condensed KKT system). The linear system (6) is equivalent to[
K + Σp G>

G 0

] [
pd
py

]
= −

[
r1 +H>(Σsr4 − r2)

r3

]
, (8)

where K ∈ R(Nnx+nu)×(Nnx+nu) is the condensed matrix K := W + H>ΣsH. The

1It is equivalent to the normal equations in linear programming [30, Chapter 16, p.412]

6

Figure 1.. Successive reductions for a block-structured nonlinear problem with N = 3: Aug-
mented system (6), Condensed system (8), Reduced system (11).

descent directions ps and pz are recovered as{
pz = Σs

[
Hpd + r4

]
− r2 ,

ps = −Σ−1
s

[
r2 + pz

]
.

(9)

Proof. See [31, Theorem 2.2].

The condensed matrix K inherits the block-angular structure of the Hessian of the
Lagrangian W .

Proposition 2.2. The condensed matrix K = W+H>ΣsH has a block-angular struc-
ture, given as

K =


Kx1x1

Kx1u

. . .
...

KxNxN
KxNu

Kux1
. . . KuxN

Kuu

 (10)

where we have defined the condensed blocks Kxixi
:= Wxixi

+ (H i
xi

)>ΣsiH
i
xi

, Kuxi
:=

Wuxi
+ (H i

u)>ΣsiH
i
xi

and Kuu := Wuu +
∑N

i=1(H i
u)>ΣsiH

i
u.

Proof. This is proved by induction.

2.3.2. Reduction step

In addition, we can exploit the structure of the equality constraints g1, · · · , gN to
further reduce the size of the linear system (8) down to a dense matrix with size
nu × nu. Equation (10) exhibits the structure w.r.t. the state x and the control u, we

7

rewrite as such the condensed KKT system (8) as

Kx1x1
Kx1u (G1

x1
)>

. . .
...

. . .

KxNxN
KxNu (GN

xN
)>

Kux1
. . . KuxN

Kuu (G1
u)> . . . (G1

u)>

G1
x1

G1
u

. . .
...

GN
xN

GN
u





px1

...
pxN

pu
p1
y
...
pNy


= −



r̂1
1
...
r̂N1
r̂2

r̂1
3
...
r̂N3


,

where we have renamed the right-hand-side in (8) as r̂.

Proposition 2.3 (Reduction). Assume that for all i = 1, · · · , N the Jacobian matri-
ces Gi

x ∈ Rnx×nx are invertible. Then the linear system (8) is equivalent to

K̂uu pu = −r̂2 +

N∑
i=1

[
(Gi

u)>(Gi
x)−>r̂i1 +

[
Kuxi

− (Gi
u)>(Gi

x)−>Kxixi

]
(Gi

x)−1r̂i3

]
(11)

with K̂uu := Z>KZ and Z ∈ R(nu+Nnx)×nu is the reduction operator defined as

Z =


−(G1

x)−1G1
u

...
−(GN

x)−1GN
u

I

 . (12)

The descent directions px and py are recovered as{
pix = −(Gi

x)−1
[
r̂i3 +Gi

upu
]

piy = −(Gi
x)−>

[
r̂i1 +Kxixi

pix +Kxiupu
]
.

(13)

Proof. See [31, Theorem 2.1].

The reduction (11) is equivalent to a Schur complement approach applied to the
condensed KKT system (8). In Proposition (2.1), we have shown that the condensed
matrix K has a block-angular structure. The associated condensed KKT system (8)
is also inheriting a block-angular structure in the form of (7), where the blocks are
given by

A0 = Kuu , Ai =

[
Kxixi

(Gi
x)>

Gi
x 0

]
, Bi =

[
Kxiu

Gi
u

]>
. (14)

Proposition 2.4. Assume that for each i = 1, · · · , N the Jacobian Gi
x is invertible.

Let Suu = A0 −
∑N

i=1BiA
−1
i B>i be the Schur complement associated to the block-

angular system (7) with the matrices (Ai, Bi) defined in (14). Then, the Schur com-

plement Suu is equal to the reduced matrix K̂uu defined in (11): Suu = Z>KZ.

8

Proof. First, note that if the Jacobian Gi
x is invertible, then the block matrix Ai

defined in (14) is also invertible, with

A−1
i =

[
0 (Gi

x)−1

(Gi
x)−> −(Gi

x)−>Kxixi
(Gi

x)−1

]
. (15)

Using (14)-(15), we expand the expression of the terms in the sum constituting the
Schur complement Suu:

BiA
−1
i B>i =

[
Kuxi

(Gi
u)>
] [0 (Gi

x)−1

(Gi
x)−> −(Gi

x)−>Kxixi
(Gi

x)−1

] [
Kxiu

Gi
u

]
,

= (Gi
u)>(Gi

x)−>Kxiu +Kuxi
(Gi

x)−1(Gi
u)− (Gi

u)>(Gi
x)−>Kxixi

(Gi
x)−1Gi

u .

Hence, the Schur complement Suu = A0 −
∑N

i=1BiA
−1
i B>i expands as

Suu = Kuu −
N∑
i=1

[
(Gi

u)>(Gi
x)−>Kxiu +Kuxi

(Gi
x)−1(Gi

u)− (Gi
u)>(Gi

x)−>Kxixi
(Gi

x)−1Gi
u

]
= Z>KZ .

We recover the expression of the reduced matrix K̂uu in Proposition 2.3.

2.4. Discussion

Hence, we can interpret the reduction step as a Schur complement approach. Forming
the Schur complement has always been the bottleneck when solving distributed block
angular problems in parallel [8, 26]. Its reduction operation involves large memory
transfers between the processes, with the number of transfers being on the order
of O(log(p)), where p is the number of processes. Due to the quasi-shared memory
architecture on GPUs, the reduction can be implemented efficiently [31]. In the next

section, we propose to extend [31] to assemble the reduced matrix K̂uu using two levels
of parallelism, using both MPI and CUDA, thus reducing the reliance on distributed
memory.

3. Parallel implementation

In the previous section, we have detailed the structure of block-angular nonlinear
programs and presented the condensation and reduction steps for the KKT system.
The loose coupling between the blocks is favorable for parallelizing the evaluation of
the derivatives and the solution of the block-angular KKT system. Globally, we can
distribute the computation on different processes using MPI (coarse parallelism). Lo-
cally, we can further streamline the computation using GPU accelerators (fine-grained
parallelism). This paradigm, with its two levels of parallelism, is directly in line with
what is currently offered by the new exascale architectures, where each node has 4 to
8 GPUs, all sharing a unified memory for fast communication. We present in §3.1 how
we streamline the evaluation of the model using automatic differentiation, and in §3.2
how we parallelize the solution of the KKT system.

9

3.1. Parallel automatic-differentiation

First, we present how to evaluate the model in parallel using automatic differentiation
[18]. We illustrate the procedure in Figure 2. The goal of the algorithm is to streamline
the evaluation of the N scenarios on N/M GPUs, M being the number of scenarios
evaluated locally on each GPU (we suppose here that N is a multiple of M).

root

g1
, · ·

· , g4
g
13 , · · · , g

16

g1 g4· · · g13 g16· · ·

· · · · · ·

Figure 2.. Parallel evaluation of the derivatives for g1, · · · gN on 4 GPUs: we have a total of
N = 16 scenarios, each GPU evaluating M = 16/4 = 4 scenarios locally.

3.1.1. Local parallelism

The first level of parallelism streamlines the evaluation of the model on SIMD/GPU
devices. We have designed our implementation to run entirely on the GPU device, to
avoid any data transfer between the host and the device.

3.1.1.1. Block evaluation. We suppose that the nonlinear functions (fi, gi, hi)
share the same structure, its expressions yielding the same Abstract Syntax Tree (AST)
for all i = 1, · · · ,M . We illustrate the block evaluation on a simple abstract tree, but
the reasoning extends to more complicated structures. We suppose that for all i, the
functions fi, gi, hi depend linearly on a nonlinear basis matrix ψ : Rnx × Rnu → Rnb :
that is, there exists three sparse matrices Lf , Lg, Lh such that

fi(xi, u) = Lfψ(xi, u) , gi(xi, u) = Lgψ(xi, u) , hi(xi, u) = Lhψ(xi, u) . (16)

Suppose we aim to evaluate the M functions g1, · · · , gM in batch for the states
x1, · · · , xM . The structure (16) is directly amenable for SIMD evaluation. We de-
note by XM = (x1, · · · , xM) ∈ Rnx×M the dense matrix obtained by concatenat-
ing the M states together. By using a proper GPU kernel or a parallel modeler,
we can evaluate the basis in a SIMD fashion and build the matrix Ψ(XM , u) :=(
ψ(x1, u), · · · , ψ(xM , u)

)
∈ Rnb×M . Then, evaluating the functions g1, · · · , gM simul-

taneously translates to the evaluation of one SpMM product:(
g1(x1, u), · · · , gM (xM , u)

)
= LgΨ(XM , u) ∈ Rnx×M . (17)

The total memory required in the two successive operations is O((nx +nb)×M), and
depends linearly on the number of blocks M . We note the SpMM operations are generally
implemented efficiently in the vendor library (cusparse for CUDA, rocSPARSE for
AMDGPU).

10

3.1.1.2. First-order derivatives. Suppose that for a given i we have a differen-
tiable implementation gbi : Rnd → Rnx associated to the function gi. We aim to
evaluate the Jacobian-matrix products (∇gi)D for p tangents encoded in a matrix
D ∈ Rnd×p using forward-mode AD and operator overloading. This operation trans-
lates to propagating forward a vector of dual numbers. Denoting by d ∈ Dnd

p the dual
number encoding the p tangents stored in D, evaluating (∇gi)D simply amounts to
call gbi(d) and extract the results in the dual numbers returned as a result. As Gi

is sparse, we can apply the technique of Jacobian coloring [18] to compress the inde-
pendent columns of the sparse matrix Gi and reduces the number of required seeding
tangents p needed to evaluate the full Jacobian.

Suppose now we want to evaluate the sparse Jacobians G1, · · · , GM in batch. As
the functions gi are based on the same AST, their respective Jacobians G1, · · · , GM

are sharing the same sparsity pattern. By seeding a matrix of dual numbers DM =
(d1, · · · , dM) ∈ Dnd×M

p , we can use the same operation as (17) to streamline the
evaluation of the M Jacobian-vector products using the SIMD kernel Ψ(·) and SpMM

operations: (
gb1(d1), · · · , gbM (dM)

)
:= LgΨ(DM) ∈ Dnx×M

p . (18)

Once the results are evaluated, it remains to uncompress the dual outputs to build
the M sparse Jacobians G1, · · · , GM . Hence, we can streamline the evaluation of the
Jacobian along with the number of tangents p and the number of blocks M . This comes
at the expense of increasing memory usage to O((nx +nb +nd)×M × p) (to store the
dual matrices associated to the input, the intermediate basis Ψ and the output).

3.1.1.3. Second-order derivatives. The evaluation of the second-order deriva-
tives follows the same procedure, using forward-over-reverse AD. For each i, we sup-
pose available an adjoint function adj gbi : Rnd × Rnx → Rnd which for any pri-
mal x ∈ Rnd and adjoint y ∈ Rnx evaluates the Jacobian-transpose vector product
(Gi(x))>y (reverse-mode). Using forward-mode AD on top of adj gbi, we can compute
the second-order derivatives y>∇2gi(x)V for p directions V by calling adj gbi(x, y).
Using Hessian coloring, we can compress the independent columns of the sparse matrix
y>∇2g(x) and reduce the number of seeding tangents p required to evaluate the full
Hessian. We note that in general obtaining an adjoint adj gbi running in parallel is
nontrivial due to potential race conditions incurred by the control flow reversal of the
original code.

Computing the Hessian y>∇2gi(x) in parallel for i = 1, · · ·M amounts to defining
two matrices of dual numbers XM = (X1, · · · , XM) ∈ Dnd×M

p , YM = (y
1
, · · · , y

M
) ∈

Dnx×M
p and evaluate ∇Ψ(XM)>L>g YM . The dual outputs are uncompressed to build

the M sparse Hessians (as the sparsity pattern of the Hessians is different than those
of the Jacobians, the matrix XM employed here is different than the one used in (18)).
The total memory required to store the duals is O((2nx +nd +nb)×M ×p). For more
details, we refer to the vector forward mode as described in [18].

3.1.2. Global parallelism

Now, if we have several GPUs at our disposal, we can push the parallelism further
by distributing the evaluations using multiprocessing and a Message Passing Interface
(MPI) library. Coming back at our original problem (2), we illustrate in Figure 2 how to
dispatch the evaluation of the N nonlinear constraints g1, · · · , gN (the same reasoning

11

applies to the objectives f1, · · · , fN and the inequality constraints h1, · · · , hN). We use
the streamlined implementation described in the previous subsection to evaluate the
constraints in a batch of size M : the first GPU evaluates the constraints g1, · · · , gM ,
the second GPU evaluates gM+1, · · · , g2M , and so on. In total, the evaluation of the
N constraints requires N/M GPUs (if M = 1, each GPU evaluate one constraint; if
M = N , we use only one GPU evaluating all the constraints).

The implementation has been designed to minimize the communication between
the different processes: each batch g1, · · · , gM stores the data it needs locally, the only
data exchange with the other processes being the vector of input and the vector of
output. In addition, we will see in the next section we do not have to transfer the first-
and second-order information if a parallel linear solver is being used.

3.2. Parallel KKT solver

By exploiting the block-angular structure of the KKT system, we can solve the New-
ton step in parallel using a Schur complement approach. The challenge lies in the
computation of the Schur complement matrix S = A0 −

∑N
i=1BiA

−1
i B>i . Each prod-

uct BiA
−1
i B>i requires the factorization of the matrix Ai and the solution of a linear

system with multiple (sparse) right-hand-side A−1
i Bi. State-of-the-art methods are

evaluating the Schur complement using an incomplete augmented factorization ap-

plied on the auxiliary matrix

[
Ai B>i
Bi 0

]
, as currently implemented in the Pardiso

linear solver [33]. Here, we use an alternative approach building on the reduced KKT
system §2.3.2 (equivalent to the Schur complement approach). As the reduction can
be streamlined on GPU accelerators [31], this approach can assemble the Schur com-
plement in parallel using CUDA-aware MPI. We illustrate the parallel computation of
the Schur complement in Figure 3.

root

(Assembling)

K,G

K,G

K,G

K,G

AD

AD

AD

AD

K̂1:4
uu

K̂5:8
uu

K̂9:12
uu

K̂13:16
uu

(Reduction)

Z>KZ

Z>KZ

Z>KZ

Z>KZ

MPI AllReduce

+

(Schur compl.)

K̂uu

Figure 3.. Parallel computation of the Schur complement.

Assembling the sparse matrices. Using the procedure introduced in §3.1.1, we
evaluate locally the Jacobians G1, · · · , GM the Jacobians H1, · · · , HM and the Hes-
sians W 1, · · · ,WM . Using dedicated kernels, we uncompress the results in the block-

12

angular sparse Jacobians

G1:M
x =

G
1
x1

. . .

GM
xM

 , G1:M
u =

G
1
u

...
GM

u

 , H1:M =

H
1
x1

H1
u

. . .
...

HM
xM

HM
u

 ,

and sparse Hessian

W 1:M =


Wx1x1

Wx1u

. . .
...

WxMxM
WxMu

Wux1
. . . WuxM

Wuu

 .

Once the sparse matrices are obtained, we recover the condensed matrix K1:M =
W 1:M + (H1:M)>Σ(H1:M) (Proposition 2.1) using one SpGEMM operation and we fac-
torize the matrix G1:M

x using a sparse LU factorization (potentially running in batch
as the matrices G1

x1
, · · · , GM

xM
are sharing the same sparsity pattern). Once the ma-

trix G1:M
x is factorized as PG1:M

x Q = LU (P , Q being two permutation matrices),
computing (G1:M

x)−1b translates to two backsolves (SpSV) and two matrix-vector mul-
tiplications (SpMV), as (G1:M

x)−1b = QU−1L−1Pb.

Local reduction. Once the sparse matrices are built, we evaluate locally the reduced
matrix K̂1:M

uu on the GPU, using div(nu, nbatch) + 1 matrix-matrix product K̂1:M
uu V

(with V ∈ Rnu×nbatch a dense matrix encoding nbatch vectors of the Cartesian basis of

Rnu). The evaluation of one batched matrix-matrix product K̂1:M
uu V = (Z>K1:MZ)V

proceeds in three steps

(1) Solve Tx = −(G1:M
x)−1(G1:M

u V).

(2) Evaluate

[
Lx

Lu

]
:=

[
K1:M

xx K1:M
xu

K1:M
ux K1:M

uu

] [
Tx
V

]
.

(3) Set K̂1:M
uu V = Lu −G1:M

u (G1:M
x)−>Lx.

In total, we need 2 SpSM and 3 SpMM operations in the first step, 1 SpMM in the second
step, and 2 SpSM and 3 SpMM operations in the third step, giving a total of 4 SpSM

and 7 SpMM operations. More than the computation, the reduction is limited by the
memory, as we have to store the three buffers Lx, Tx, Tu with a total size of (2M ×
nx + nu) × nbatch. If nx is too large, it is in our interest to reduce M (by using more
GPUs) or to reduce nbatch (at the expense of computing more matrix-matrix product

K̂1:M
uu V).

Global reduction. Once we obtain the locally reduced matrices K̂
nM+1:(n+1)M
uu

for n = 0, · · · , N/M − 1, we can assemble the global reduced matrix K̂uu =∑N/M−1
n=0 K̂

nM+1:(n+1)M
uu using one all reduce (MPI Allreduce) operation. The size of

the reduced matrix K̂uu is nu × nu, hence limiting the memory transfer required in
the algorithm.

13

3.3. Discussion

We have presented a practical way to assemble the Schur complement on multi-GPU
architectures. The parallelism occurs both at the local level (SIMD evaluations on the
GPUs) and at the global level (distributed computation with MPI). The algorithm
has the advantage of assembling the sparse Jacobians and Hessians only locally, as
the reduction occurs before proceeding to the memory transfer with MPI Allreduce.
The reduced matrix has a dimension nu × nu, which compresses the memory transfer
significantly if the number of degrees of freedom nu is small. However, this comes at the
expense of storing a vector of dual numbers (whose memory is linearly proportional
to the number of blocks M evaluated locally and the number of tangents p being
employed to evaluate the sparse derivatives) and additional buffers in the reduction
algorithm. In the next section, we will test an implementation of the algorithm on
CUDA GPUs, and show that the algorithm is practical.

4. Numerical results

We demonstrate the capabilities of the algorithm we introduced in Section §3 on the
supercomputer Polaris, using CUDA-aware MPI to dispatch the solution on multiple
GPUs. We present in §4.1 the stochastic optimal power flow problem, and give in §4.2
detailed assessments of the algorithms we have introduced earlier in §3. Eventually,
we present in §4.3 a benchmark comparing our parallel solution algorithm with a
state-of-the-art solution method running on the CPU.

4.1. Settings

4.1.1. Case study: the block-structured optimal power flow

The stochastic optimal power flow problem aims at finding an optimal dispatch for the
generators u. The solution u should minimize the operational costs while satisfying the
physical constraints (power flow equations g(x, u) = 0, here playing the role of the state
equations) and operational constraints (line flow constraints h(x, u) ≤ 0) on a given
set of scenarios. Each scenario is assigned given load parameters (energy demands) and
potential contingencies (line tripping). The values of the state x depend on the local
scenario we are in, the state x being the recourse variable in our case. As such, the
problem has a partially separable structure as introduced in Problem (2), the control
u being shared across all scenarios. We refer to [7] for the original presentation of the
stochastic optimal power flow problem and to [8, 23, 24, 26] for practical algorithms
solving the stochastic optimal power flow problem (some also focus on the multistage
setting, which is not covered in this article). For our benchmark, we look at reference
instances provided by MATPOWER [47], whose characteristics are detailed in Table 1.

We recall that in our case, the size of the Schur complement matrix K̂uu is given by
the number of controls nu.

4.1.2. Implementation

The algorithm has been implemented entirely in Julia 1.8. The Schur complement
approach has been developed as an extension of the nonlinear optimization solver
MadNLP [41], using CUDA-aware MPI as provided in [6]. We have used the package

14

Name #bus #lines #gen nx nu

case118 118 186 54 181 107
case1354pegase 1,354 1,991 260 2,447 519
case2869pegase 2,869 4,582 510 5,227 1,019
case9241pegase 9,241 16,049 1,445 17,036 2,889

Table 1.. MATPOWER instances used in the benchmark.

ExaPF as a nonlinear modeler for the optimal power flow problem. All the results
presented here have been generated on the supercomputer Polaris equipped with a
total of 560 nodes, each node having with 1 CPU and 4 A100 GPUs.

4.2. Assessment of the parallel implementation

4.2.1. Assessing the performance of the parallel automatic differentation

We first assess the performance of the parallel automatic differentiation we introduced
in §3.1 in a multi-GPU setting. We compare the performance we obtain with a CPU
implementation. We use case1354pegase as a representative instance, and display the
time spent in the automatic differentiation as we increase the total number of scenarios
N . The results are displayed in Figure 4.

We observe that the computation time depends linearly on the number of scenarios,
as expected. For N = 8, it is not worthwhile dispatching the evaluation on multiple
GPUs as the problem is small enough to be evaluated on a single GPU. For N = 512,
the evaluation time is 12.3s on the CPU, compared to 0.50, 0.41, 0.31, and 0.28s using
1, 2, 4 and 8 GPUs, respectively. Hence, we get a 40x speed-up when evaluating the
derivatives in a multi-GPU setting, and it is not worthwhile to use more than 4 GPUs
(one node).

8 16 32 64 128 256 512
N scenarios

10 1

100

101

Ev
al

ua
tio

n
tim

e
[s

]

case1354pegase
CPU
1 GPUs
2 GPUs
4 GPUs
8 GPUs

Figure 4.. Time spent to evaluate the model and its derivatives with automatic differentiation.

15

4.2.2. Assessing the performance of the parallel KKT solver

We proceed to the same performance analysis to assess the performance of the parallel
KKT solver detailed in §3.2. We compare the time required to evaluate the full solution
of the KKT system afresh (including reduction time, factorization time and backsolve
time) on case1354pegase as we increase the number of scenarios N . As a reference,
we give the time taken by the sparse linear solvers HSL MA27 (single-threaded) and
HSL MA57 (multi-threaded). The results are displayed in Figure 5.

On the left, we display the evolution of the time spent in the linear solver as we
increase the number of scenarios. For N = 512, we observe that we get a linear speed-
up as we increase the number of GPUs: using 8 GPUs, the parallel KKT solver is
40x faster than using HSL MA27 on the CPU. Interestingly, we observe that HSL
MA57 is not faster than HSL MA27, despite being multithreaded. This is consistent
with the observation made in [42], and illustrates the difficulty of parallelizing ef-
fectively the sparse LDL factorization (Bunch-Kaufman). On the right, we display a
performance profile detailing the time spent in MA27 and the parallel KKT solver on
case1354pegase with N = 512 scenarios. We observe that most of the time in HSL
MA27 is spent on factorizing the sparse augmented KKT system (6). On the other

side, the factorization of the dense reduced matrix K̂uu is trivial using LAPACK on
the GPU; the bottleneck in the parallel KKT solver is the reduction algorithm itself.
Fortunately, the reduction algorithm can run in parallel: we get a linear speed-up as
we increase the number of GPUs used in the reduction algorithm.

8 16 32 64 128 256 512
N scenarios

10 1

100

101

Ti
m

e
[s

]

Linear solver time against N
ma27
ma57
1 GPUs
2 GPUs
4 GPUs
8 GPUs

ma27 1 GPU 2 GPUs 4 GPUs 8 GPUs
0

2

4

6

8

Ti
m

e
[s

]

Performance profile for N = 512
Factorization
Backsolve
Reduction

Figure 5.. Time spent to solve the KKT system for case1354pegase.

4.2.3. Assessing the memory consumption

We have observed in §3.1 that the total memory required to store the duals is O((2nx+
nd + nb)×M × p), with M being the number of scenarios stored locally (M = N on
1 GPU, M = N/2 on 2 GPUs) and p the number of tangents. We display in Table 2
the memory taken by the automatic differentiation backend and by the parallel KKT
solver for case1354pegase as we increase the number of scenarios N . We note that
storing the duals is expensive in terms of memory, with up to 10.9GB for N = 512 on
one GPU (as a reference, each NVIDIA A100 GPU on Polaris has 40GB of memory
available). By evaluating the model on different processes with MPI, we can split the
memory consumption on the different GPUs we are using, leading to better use of the
resource at our disposal.

16

1 GPU 2 GPUs

N AD KKT solver AD KKT solver

8 171.1 92.3 85.5 48.1
16 342.2 181.5 171.1 93.1
32 684.3 360.0 342.2 183.2
64 1,368.7 716.8 684.3 363.2
128 2,737.3 1,430.5 1,368.7 723.4
256 5,474.7 2,858.0 2,737.3 1,443.6
512 10,949.3 5,712.8 5,474.7 2,884.1

Table 2.. Memory consumption in MB

4.3. Parallel solution of the block-structured OPF problem

We analyze the parallel performance of our implementation on block-structured OPF
problems.

4.3.1. Assessing the parallel performance w.r.t. the number of scenarios

First, we are interested in the scaling of the parallel algorithm in relation to the total
number of scenarios N . We consider the case118 instance, and increase the number
of scenarios N from 8 up to 2,048. For each N , we solve the block-structured OPF
problem with MadNLP using our parallel KKT solver, and we compare with the
performance we obtained with HSL MA27. The results are displayed in Figure 6. We
observe that the solver HSL MA27 is initially faster than our parallel KKT solver, as
the problem is too small to benefit from parallelism. However, as soon as N ≥ 16 the
parallel KKT solver becomes competitive with HSL MA27. The relative performance is
improving as we increase the number of scenarios N : for N = 512, we get a 68x speed-
up when using 8 GPUs, compared to the reference HSL MA27 (10.4s versus 712s).
Interestingly, using 2 nodes (=8 GPUs) does not lead to any speed-up compared to
a single node (=4 GPUs) if N ≤ 256; this setting is attractive only when the size of
the problem becomes sufficiently large (N ≥ 1024) to compensate for the additional
memory exchange.

4.3.2. Assessing the parallel performance w.r.t. the size of the problem

Second, we increase the size of the problems. We set a fixed number of scenarios
N = 8, and look at the time to solution for case1354pegase, case2869pegase and
case9241pegase. We detail the respective dimension of each problem in Table 3. We
display the results in Figure 7, and give the detailed benchmark in Table 4. On the
left (a), we display the total time required to find the solution of the three instances as
a function of the number of GPUs; on the right (b), we show the performance profile
associated to case9241pegase. In (a), we observe that overall the parallel algorithm is
faster than the CPU implementation. The parallel algorithm scales well as we increase
the number of GPUs we are using, the parallel algorithm being 35x faster than the
reference when using 8 GPUs to solve case9241pegase. In (b), we detail the time

17

8 16 32 64 128 256 512 1,024 2,048
N scenarios

100

101

102

103

Ti
m

e
to

 so
lu

tio
n

[s
]

case118
ma27 (CPU)
polaris (1 GPUs)
polaris (2 GPUs)
polaris (4 GPUs)
polaris (8 GPUs)

Figure 6.. Time to solve the block-structured OPF problem case118 as a function of the
number of scenarios N .

spent in the different operations for case9241pegase: the time spent to factorize the
Schur complement with Lapack (using cusolve) is constant as the size of the Schur
complement remains the same as we increase the number of GPUs. We observe that
the time spent in the AD decreases linearly with the number of GPUs exploited, but
the relative time spent in AD is negligible (less than 5% of the total time). Most of
the time is spent in the parallel reduction, as discussed earlier in §4.2.2.

N nvar ncon K̂uu (mb)

1354pegase 8 20,095 53,520 2.1
2869pegase 8 42,835 119,216 7.9
9241pegase 8 139,177 404,640 63.7

1354pegase 512 1,253,383 4,425,280 2.1

Table 3.. Dimension of the instances we have used in our benchmark.

4.3.3. Assessing the parallel performance on a very large-scale instance

We finish our numerical experiments by solving a very large-scale instance:
case1354pegase with N = 512 scenarios. The dimension of the resulting optimization
problem is displayed in Table 3: the problem has more than 1 million variables, and 4
millions constraints. We solve this instance on resp. 1 node, 2, 4 and 8 nodes (resp. 4,
8, 16 and 32 GPUs). The results are displayed in Figure 8. We observe that the scaling
is almost perfect when we use 2 nodes (8 GPUs) instead of a single node (4 GPUs)
but we do not observe the same behavior when we increase the number of nodes to 4
and 8. On that instance, the gain we get when using 8 nodes (32 GPUs) is marginal

18

CPU 1 GPU 2 GPU 4 GPU 8 GPU
100

101

102

103

Ti
m

e
to

 so
lu

tio
n

[s
]

Benchmark
1354pegase
2849pegase
9241pegase

1 GPU 2 GPUs 4 GPUs 8 GPUs
10 1

100

101

102

Ti
m

e
[s

]

Performance profile, 9241pegase

Total time
linear scaling
AD
Factorization

Figure 7.. For a fixed number of scenarios N = 8, (a) total time spent solving the block-
OPF case1354pegase, case2869pegase and case9241pegase with MadNLP (b) performance
profile for case9241pegase with varying number of GPUs.

1354pegase 2869pegase 9241pegase

#it AD KKT Tot. #it AD KKT Tot. #it AD KKT Tot.

CPU 44 2.6 4.2 7.0 77 11.9 27.4 40.3 136 205.6 771.8 984.1
1 GPU 44 0.3 1.8 2.1 93 1.1 11.7 12.8 98 5.5 112.3 117.8
2 GPUs 44 0.3 1.1 1.4 93 0.8 7.4 8.2 98 3.4 56.8 60.2
4 GPUs 44 0.3 1.0 1.3 93 0.8 5.7 6.5 98 2.3 35.8 38.1
8 GPUs 44 0.2 1.0 1.2 93 0.6 5.1 5.7 98 1.4 26.4 27.7

Table 4.. Detailed results

compared to when using 4 nodes (16 GPUs): the solving time only decreases from
67s to 58s. This corroborate our observations: it is better to pack all the computa-
tion on a single node to use four A100 GPUs connected together via unified memory
(NVLINK has a transfer rate of 600GB/s). When we have to use more than 2 nodes,
the memory transfers are more involved as they have to pass through the network of
the supercomputer.

5. Conclusion

We show promising results for leveraging massively parallel SIMD architectures like
GPUs for block-structured nonlinear programs. The parallelism is applied to both the
derivative evaluation and the solution of the KKT linear system. The main operation
in the KKT algorithm is the assembling of the Schur complement, the factorization of
the dense Schur complement being fast to carry on the GPU.

At all levels, the method benefits significantly from the massive parallelism, achiev-
ing a speedup of around 40 for the derivatives compared to a sequential CPU im-
plementation. The speedup is very application dependent, not least on the Hessian
coloring and the problem’s structure. The assembling of the Schur complement is bot-
tlenecked by a distributed reduction operation bound by the interconnect’s latency
and throughput between GPUs. Current, so-called super nodes with multiple GPUs

19

4 8 16 32
#GPUs

102

3 × 101
4 × 101

6 × 101

2 × 102

Ti
m

e
to

 so
lu

tio
n

[s
]

Benchmark 1354pegase (N=512)
Measured
linear scaling

Figure 8.. Solving case1354pegase with N = 512

connected via fast networks like NVLINK greatly accelerate this operation. Lastly, our
method is limited by the memory capacity of the GPU accelerators as it grows linearly
with the number of problem blocks. In the context of ACOPF we are confident that
upcoming GPUs will provide enough memory to solve a large number of scenarios in
parallel, even for the largest grid instances (e.g., Eastern Interconnection with 70,000
nodes).

With the upcoming release of the Aurora supercomputer, these SIMD architectures
will allow new science in regimes that were impossible with previous CPU architec-
tures.

Acknowledgment

This material was based upon work supported by the U.S. Department of Energy, Of-
fice of Science, Office of Advanced Scientific Computing Research (ASCR) under Con-
tract DE-AC02-06CH11347 and by NSF through award CNS-1545046. The authors
gratefully acknowledge the funding support from the Applied Mathematics Program
within the U.S. Department of Energy’s (DOE) Office of Advanced Scientific Com-
puting Research (ASCR) as part of the project ExaSGD. This research used resources
of the Argonne Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

References

[1] Amestoy, P. R., Duff, I. S., and L’excellent, J.-Y. (2000). Multifrontal parallel distributed
symmetric and unsymmetric solvers. Computer methods in applied mechanics and engineer-
ing, 184(2-4):501–520.

[2] Birge, J. R. and Qi, L. (1988). Computing block-angular Karmarkar projections with
applications to stochastic programming. Management science, 34(12):1472–1479.

[3] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,

20

Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable
transformations of Python+NumPy programs.

[4] Bücker, H. M., Lang, B., an Mey, D., and Bischof, C. H. (2001). Bringing together auto-
matic differentiation and OpenMP. In Proceedings of the 15th international conference on
Supercomputing, pages 246–251.

[5] Bussieck, M. R. and Meeraus, A. (2004). General algebraic modeling system (GAMS). In
Modeling languages in mathematical optimization, pages 137–157. Springer.

[6] Byrne, S., Wilcox, L. C., and Churavy, V. (2021). MPI. jl: Julia bindings for the Message
Passing Interface. In Proceedings of the JuliaCon Conferences, volume 1, page 68.

[7] Capitanescu, F., Ramos, J. M., Panciatici, P., Kirschen, D., Marcolini, A. M., Platbrood,
L., and Wehenkel, L. (2011). State-of-the-art, challenges, and future trends in security
constrained optimal power flow. Electric power systems research, 81(8):1731–1741.

[8] Chiang, N., Petra, C. G., and Zavala, V. M. (2014). Structured nonconvex optimization
of large-scale energy systems using PIPS-NLP. In 2014 Power Systems Computation Con-
ference, pages 1–7. IEEE.

[9] Choi, I. C. and Goldfarb, D. (1993). Exploiting special structure in a primal—dual path-
following algorithm. Mathematical Programming, 58(1):33–52.

[10] Colombo, M., Grothey, A., Hogg, J., Woodsend, K., and Gondzio, J. (2009). A structure-
conveying modelling language for mathematical and stochastic programming. Mathematical
Programming Computation, 1(4):223–247.

[11] DeMiguel, V. and Nogales, F. J. (2008). On decomposition methods for a class of partially
separable nonlinear programs. Mathematics of Operations Research, 33(1):119–139.

[12] Duff, I. S. (2004). MA57—a code for the solution of sparse symmetric definite and indef-
inite systems. ACM Transactions on Mathematical Software (TOMS), 30(2):118–144.

[13] Duff, I. S. and Van Der Vorst, H. A. (1999). Developments and trends in the parallel
solution of linear systems. Parallel Computing, 25(13-14):1931–1970.

[14] Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language for math-
ematical optimization. SIAM review, 59(2):295–320.

[15] Fourer, R., Gay, D. M., and Kernighan, B. W. (1990). A modeling language for mathe-
matical programming. Management Science, 36(5):519–554.

[16] Gondzio, J. and Grothey, A. (2009). Exploiting structure in parallel implementation of
interior point methods for optimization. Computational Management Science, 6(2):135–160.

[17] Gondzio, J. and Sarkissian, R. (2003). Parallel interior-point solver for structured linear
programs. Mathematical Programming, 96(3):561–584.

[18] Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and techniques
of algorithmic differentiation. SIAM.

[19] Hovland, P. and Bischof, C. (1998). Automatic differentiation for message-passing parallel
programs. In Proceedings of the First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing, pages 98–104. IEEE.

[20] Hovland, P. D. (1997). Automatic differentiation of parallel programs. University of Illinois
at Urbana-Champaign.

[21] Huchette, J., Lubin, M., and Petra, C. (2014). Parallel algebraic modeling for stochas-
tic optimization. In 2014 First Workshop for High Performance Technical Computing in
Dynamic Languages, pages 29–35. IEEE.

[22] Jessup, E. R., Yang, D., and Zenios, S. A. (1994). Parallel factorization of structured
matrices arising in stochastic programming. SIAM journal on Optimization, 4(4):833–846.

[23] Kardoš, J., Kourounis, D., and Schenk, O. (2019). Two-level parallel augmented Schur
complement interior-point algorithms for the solution of security constrained optimal power
flow problems. IEEE Transactions on power systems, 35(2):1340–1350.

[24] Kardoš, J., Kourounis, D., and Schenk, O. (2020). Structure-exploiting interior point
methods. In Parallel Algorithms in Computational Science and Engineering, pages 63–93.
Springer.

[25] Kardoš, J., Kourounis, D., Schenk, O., and Zimmerman, R. (2022). Beltistos: A robust
interior point method for large-scale optimal power flow problems. Electric Power Systems

21

Research, 212:108613.
[26] Lubin, M., Petra, C. G., Anitescu, M., and Zavala, V. (2011). Scalable stochastic opti-

mization of complex energy systems. In SC’11: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–10. IEEE.

[27] Moses, W. S., Churavy, V., Paehler, L., Hückelheim, J., Narayanan, S. H. K., Schanen, M.,
and Doerfert, J. (2021). Reverse-mode automatic differentiation and optimization of GPU
kernels via Enzyme. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–16.

[28] Nash, S. G. and Sofer, A. (1989). Block truncated-Newton methods for parallel optimiza-
tion. Mathematical Programming, 45(1):529–546.

[29] Nash, S. G. and Sofer, A. (1991). A general-purpose parallel algorithm for unconstrained
optimization. SIAM Journal on Optimization, 1(4):530–547.

[30] Nocedal, J. and Wright, S. J. (2006). Numerical optimization. Springer series in operations
research. Springer, New York, 2nd edition.

[31] Pacaud, F., Shin, S., Schanen, M., Maldonado, D. A., and Anitescu, M. (2022). Ac-
celerating condensed interior-point methods on SIMD/GPU architectures. arXiv preprint
arXiv:2203.11875.

[32] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32.

[33] Petra, C. G., Schenk, O., Lubin, M., and Gärtner, K. (2014). An augmented incomplete
factorization approach for computing the Schur complement in stochastic optimization.
SIAM Journal on Scientific Computing, 36(2):C139–C162.

[34] Rodriguez, J. S., Parker, R., Laird, C. D., Nicholson, B., Siirola, J. D., and Bynum, M.
(2021). Scalable parallel nonlinear optimization with PyNumero and Parapint. Optimization
Online.

[35] Ruszczynski, A. (1993). Interior point methods in stochastic programming. Working
paper.

[36] Saad, Y. (1980). On the rates of convergence of the Lanczos and the block-Lanczos
methods. SIAM Journal on Numerical Analysis, 17(5):687–706.

[37] Schanen, M., Gilbert, F., Petra, C. G., and Anitescu, M. (2018). Toward multiperiod
ac-based contingency constrained optimal power flow at large scale. In 2018 Power Systems
Computation Conference (PSCC), pages 1–7. IEEE.

[38] Schenk, O. and Gärtner, K. (2004). Solving unsymmetric sparse systems of linear equa-
tions with PARDISO. Future Generation Computer Systems, 20(3):475–487.

[39] Schnabel, R. B. (1985). Parallel computing in optimization. In Computational Mathe-
matical Programming, pages 357–381. Springer.

[40] Schnabel, R. B. (1995). A view of the limitations, opportunities, and challenges in parallel
nonlinear optimization. Parallel computing, 21(6):875–905.

[41] Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2021). Graph-based modeling and
decomposition of energy infrastructures. IFAC-PapersOnLine, 54(3):693–698.

[42] Tasseff, B., Coffrin, C., Wächter, A., and Laird, C. (2019). Exploring benefits of lin-
ear solver parallelism on modern nonlinear optimization applications. arXiv preprint
arXiv:1909.08104.

[43] Watson, J.-P., Woodruff, D. L., and Hart, W. E. (2012). PySP: modeling and solving
stochastic programs in python. Mathematical Programming Computation, 4(2):109–149.

[44] Word, D. P., Kang, J., Akesson, J., and Laird, C. D. (2014). Efficient parallel solution
of large-scale nonlinear dynamic optimization problems. Computational Optimization and
Applications, 59(3):667–688.

[45] Zavala, V. M., Laird, C. D., and Biegler, L. T. (2008). Interior-point decomposition
approaches for parallel solution of large-scale nonlinear parameter estimation problems.
Chemical Engineering Science, 63(19):4834–4845.

[46] Zhu, Y., Word, D., Siirola, J., and Laird, C. D. (2009). Exploiting modern computing
architectures for efficient large-scale nonlinear programming. In Computer Aided Chemical

22

Engineering, volume 27, pages 783–788. Elsevier.
[47] Zimmerman, R. D., Murillo-Sánchez, C. E., and Thomas, R. J. (2010). MATPOWER:

Steady-state operations, planning, and analysis tools for power systems research and edu-
cation. IEEE Transactions on Power Systems, 26(1):12–19.

Government License: The submitted manuscript
has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting
on its behalf, a paid-up nonexclusive, irrevoca-
ble worldwide license in said article to repro-
duce, prepare derivative works, distribute copies
to the public, and perform publicly and display
publicly, by or on behalf of the Government.
The Department of Energy will provide pub-
lic access to these results of federally sponsored
research in accordance with the DOE Public
Access Plan. http://energy.gov/downloads/doe-
public-access-plan.

23

