, U. Nations, «World Population Prospects, 2017.

G. Zabel, The Interrelationship between Population Growth and Energy Resources, 2009.

E. E. , Administration, «International Energy outlook, 2017.

I. E. Agency and . Energy, , 2016.

M. M. El-halwagi, Pollution prevention through process integration,» Clean Products and Processes, vol.1, pp.5-19, 1998.

J. J. Klemes and Z. Kravanja, Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP),» Biotechnology and bioprocess engineering / Process systems engineering, vol.2, pp.461-474, 2013.

M. El-halwagi, F. Gabriel, and D. Harell, «Rigorous Graphical Targeting for Resource Conservation via Material recycle /reuse Networks, » Ind. Eng. Chem. Res, vol.42, pp.4319-4328, 2003.

T. Zhelev and N. Bhaw, «Combined water-oxygen pinch analysis for better wastewater treatment management, Waste Mnagement, vol.20, pp.665-670, 2000.

X. Zhu, Automated design method for heat exchanger network using block decomposition and heuristic rules, » Computer and Chemical Engineering, vol.21, pp.1095-1104, 1997.

C. Flouds, A. Ciric, and I. Grossman, Automatic synthesis of optimum heat exchanger network configurations, » AIChE journal, vol.32, p.12, 1986.

A. Ciric and C. Floudas, «Heat exchanger network synthesis without decomposition, » Computers and Chemical Engineering, vol.15, pp.385-396, 1991.

T. F. Yee and I. Grossmann, «Simultaneous optimisation models for heat integration, » Computer and Chemical Engineering, vol.14, pp.1165-1184, 1990.

A. Barbaro and M. J. Bagajewicz, «New rigorous one-step MILP formulation for heat exchanger network synthesis, » Computers and Chemical Engineering, vol.29, pp.1945-1976, 2005.

K. C. Furman and N. V. Sahinidis, Critical Review and Annotated Bibliography for Heat Exchanger,» Industrial and Engineering Chemistry Research, vol.41, pp.2335-2370, 2002.

V. R. Dhole and B. Linhoff, «Total site targets for fuel, co-generation, emissions and cooling, Computers and Chemical Engineering, vol.17, pp.101-109, 1993.

J. Klemes, V. Dhole, K. Raissi, S. Perry, and L. Puigjaner, «Targeting and design methodology for reduction of fuel, power and CO2 on total sites, » Applied Thermal Engineering, vol.17, pp.993-1003, 1997.

P. S. Varbanov, Z. Fodor, and J. J. Klemes, «Total Site targeting with process specific minimum temperature difference (?Tmin), » Energy, vol.44, pp.20-28, 2012.

R. Hackl, E. Anderson, and S. Harvey, «Targeting for energy efficiency and improved energy collaboration between diffrent companies using total site analysis(TSA), » Energy, vol.36, pp.4609-4615, 2011.

K. Matsuda, S. Tanaka, M. Endou, and T. Liyoshi, «Energy saving study on a large steel plant by total site based pinch technology, » Applied Thermal Engineering, vol.43, pp.14-19, 2012.

S. Perry, J. Klemes, and I. Bulatov, «Integrating waste and renewable energy to reduce the carbon footprint of locally integarted energy sectors, » Energy, vol.33, pp.1489-1497, 2008.

S. Bandyopadhyay, J. Varghese, and V. Bansal, «Targeting for cogeneration potential through total site integration, » Applied Thermal Engineering, vol.30, pp.6-14, 2010.

K. H. Chew, J. J. Klemes, S. R. Alwi, and Z. A. Manan, «Industrial implementation issues of total site heat integration, » Applied thermal engineering, vol.61, pp.17-25, 2013.

K. H. Chew, J. J. Klemes, S. R. Alwi, Z. A. Manan, and A. P. Reverberi, «Total site heat integration considering pressure drop, » Energies, vol.8, pp.1114-1137, 2015.

K. H. Chew, J. J. Klemes, S. W. Alwi, and Z. A. Manan, «Process modifications to maximise energy savings in total site heat integration, » Applied thermal En gineering, vol.78, pp.731-739, 2014.

V. Linnhoff, «. Pinch, . Has, and . Of-age, , 1984.

K. H. Chew, J. J. Klemes, S. R. Alwi, and Z. A. Manan, «Process modification of Total Site Heat integration profile for capital cost reduction, » Applied Thermal Engineering, vol.89, pp.1023-1032, 2015.

H. Rodera and M. Bagajewicz, «Targeting procedures for energy savings by heat integration across plants, AIChE Journal, vol.45, pp.1721-1742, 1999.

M. Bagajewicz and H. Rodera, «Multiple plant heat integration in a Total Site, AIChE Journal, vol.48, pp.2255-2270, 2002.

S. Mavromatis and A. Kokossis, Conceptual optimisation of utility networks for operational variations: 1. Targets and level optimisation, vol.53, pp.1585-1608, 1998.

Z. Shang and A. Kokossis, A Transhipment model for the optimisation os steam levels of total site utility system for multiperiod operation, » Computers and Chemical Engineering, vol.28, pp.1673-1688, 2004.

C. Chang, X. Chen, Y. Wang, and X. Feng, Simultaneous optimization of multi-plant heat integration using intermediate fluid circles, » Energy, vol.121, pp.306-317, 2017.

A. Nemet, J. J. Klemes, and Z. Kravanja, «Designing a Total Site for an entire lifetime under fluctuating utility prices, Computers and Chemical Engineering, vol.72, pp.159-182, 2015.

A. Z. , Alaa Farhat, «Heating and cooling networks design algorithm for site wide energy integration, 2015.

T. Yee and I. Grossman, Simultaneous optimization models for heat integration-2. Heat exchanger network synthesis, » Computers and Chemical Engineering, vol.14, pp.1165-1184, 1990.

K. Halemane and I. Grossmann, Optimal Process Design under Uncertainty, vol.29, pp.425-433, 1983.

R. E. Swaney and I. E. Grossmann, «An index for operational flexibility in chemical process design. Part I: Formulation and theory, AIChE Journal, vol.31, pp.621-630, 1985.

I. Grossman and C. Floudas, Active constraint strategy for flexibilty analysis in chemical processes, » Computer and Chemical Engineering, vol.11, pp.675-693, 1987.

V. D. Dimitriadis and E. N. Pistikopoulos, «Flexibility Analysis of Dynamic Systems,» Industrial & Engineering Chemistry Research, vol.34, pp.4451-4462, 1995.

E. N. Pistikopoulos and T. A. Mazzuchi, «A novel flexibility analysis approach for processes with stochastic parameters, Computers & Chemical Engineering, vol.14, pp.991-1000, 1990.

Q. Zhang, I. E. Grossmann, and R. M. Lima, On the Relation Between Flexibility Analysis and Robust Optimization for Linear Systems, AIChe Journal, vol.62, pp.3109-3123, 2016.

I. E. Grossmann, R. M. Apap, B. A. Calfa, P. Garcia-herreros, and Q. Zhang, «Recent advances in mathematical programming techniques for the optimization of process system under uncertainty, » Computers and Chemical Engineering, vol.91, pp.3-14, 2016.

Z. N. Pintaric and Z. Kravanja, «A strategy for MINLP synthesis of flexible and operable processes, » Computers and Chemical Engineering, vol.28, pp.1005-119, 2004.

P. A. Bahri, J. A. Bandoni, and J. A. Romagnoli, «Integrated flexibility and controllability analysis in design of chemical processes, AIChE Journal, vol.43, p.14, 2004.

P. A. Bahri, J. A. Bandoni, and J. A. Romagnoli, Effect of disturbances in optimzing control: Steady State Open-loop Backoff Problem, vol.42, pp.983-994, 1996.

M. Mohideen, J. Perkins, and E. Pistikopoulos, «Optimal synthesis and design of dynamic systems under uncertainty, » Computers and Chemical Engineering, vol.20, pp.895-900, 1996.

D. Marselle, M. Morari, and D. F. Rudd, «Design of resilient processing plants-2 Design and control energy management systems, » Chemical Enginneering Science, vol.37, pp.259-270, 1982.

C. A. Floudas and I. E. Grossmann, «Synthesis of flexible heat exchanger networks for multiperiod operation, » Computers and Chemical Engineering, vol.10, pp.153-168, 1982.

C. A. Floudas and I. E. Grossmann, Automatic generation of multiperiod heat exchanger network configurations, Computers & Chemical Engineering, vol.11, pp.123-142, 1987.

C. A. Floudas and I. Grossmann, Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures, vol.11, pp.319-336, 1987.

J. Aaltola, «Simultaneous synthesis of flexible heat exchanger network, » Applied Thermal Engineering, vol.22, pp.907-918, 2002.

W. Verheyen and N. Zhang, «Design of flexible heat exchanger network for multi period operation, Chemical Engineering Science, vol.61, pp.7730-7753, 2006.

C. L. Chen and P. S. Hung, «Simultaneous synthesis of flexible heat exchange networks, » Industrial and Chemical Engineering, vol.43, pp.5916-5928, 2004.

P. Y. Liew, S. R. Alwi, P. S. Varbanov, Z. A. Manan, and J. J. Klemes, «A numerical technique for total site sensitivity analysis, » Applied thermal Engineering, vol.40, pp.397-408, 2011.

P. Y. Liew, S. R. Alwi, P. S. Varbanov, and J. J. Klemes, «Centrelised utility system planning for a total site heat integration network, » Computers and Chemical Engineering, vol.57, pp.104-111, 2013.

P. S. Varbanov and J. J. Klemes, «Integration and management of renewables into Total Sites with variable supply and demand, Computers and Chemical Engineering, vol.35, pp.1815-1826, 2011.

F. Marechal and B. Kaliventzeff, «Targeting the integration of multi-period utility systems for site scale process integration, » Applied Thermal Engineering, vol.23, pp.1763-1784, 2003.

M. Nayyar, Piping Handbook, 2000.

K. H. Chew, J. J. Klemes, S. W. Alwi, and Z. A. Manan, «Process modifications to maximise energy savings in total site heat integration, » Applied thermal En gineering, vol.78, pp.731-739, 2014.

C. J. , «Comments on improvements on a replacement for the logarithmic mean, 1987.

W. Verheyen and N. Zhang, «Design of flexible heat exchanger network for multi-period operation, Chemical Engineering Science, vol.61, pp.7730-7753, 2006.

W. Paterson, «A replacement for the logarithmic mean, Chemical Engineering Science, vol.39, issue.%111, pp.1635-1636, 1984.

C. Chang, Y. Wang, and X. Feng, «Indirect heat integration across plants using hot water circles, » Chinese Journal of Chmical Engineering, vol.23, pp.992-997, 2015.

A. Chauvel, G. Fournier, and C. Raimbault, Manuel d'évaluation économique des procédés, TECHNIP, 2001.