A. Fridman, Plasma Chemistry, 2008.

S. Takali, Etude d ' un électrobrûleur industriel doté d ' une torche à arc triphasée pour la valorisation énergétique de combustibles à faible pouvoir calorifique Sabri Takali To cite this version : HAL Id : tel-01315556 l ' École nationale supérieure des mines de, 2016.

M. Gautier, Etude de la formation de nanoparticules de carbone au cours de la décomposition thermique d'hydrocarbures : application à la coproduction de noir de carbone et d'hydrogène par craquage thermique du méthane par voie plasma, 2016.

B. Petroleum, BP Statistical Review of World Energy, issue.66, pp.1-52, 2017.

F. Yang, Low-voltage circuit breaker arcs -Simulation and measurements, J. Phys. D. Appl. Phys, vol.46, issue.27, 2013.

L. Fulcheri, F. Fabry, S. Takali, and V. Rohani, Three-Phase AC Arc Plasma Systems: A Review, vol.35, pp.565-585, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139833

M. F. Zhukov and I. M. Zasypkin, Thermal Plasma Torch Design, Characteristics and Applications, 2007.

O. P. Solonenko, Thermal Plasma Torches and Technologies. Cambridge: Cambridge International Science, 2004.

H. Maecker, Plasmaströmungen in Lichtbögen infolge eigenmagnetischer Kompression, Zeitschrift für Phys, vol.141, issue.1-2, pp.198-216, 1955.

H. H. Maecker and H. G. Stablein, What Keeps an Arc Standing in a Cross Flow?, IEEE Trans. Plasma Sci, vol.14, issue.4, pp.291-299, 1986.

H. Maecker, The Electric Arc, The Physics of Stationary Gaz Discharges near Thermal Equilibrium, Popp Matlab GmbH,D 82335 Berg, 2009.

O. Solonenko, Plasma torches, basic studies and design, 2000.

G. A. Desyatkov, V. S. Engelsht, V. T. Gurovitch, and V. L. Spektorov, Theoretical investigation of the evolution of a long arc in external fields, 10th ISPC, vol.1, pp.1-6, 1991.

R. Philipps, D. Geister, P. Handy, and S. Bowen, Three-Phase AC Arc Heater. The University of Michigan, 1964.

R. Philipps, The Behavior of Dynamic Electric Arcs. The University of Michigan, 1964.

R. Philipps, Theory of the Non-Stationary Arc Column, vol.18, pp.65-78, 1966.

D. Geister, Analysis and Design of a High Pressure AC Arc Heater. The University of Michigan, 1967.

J. J. Lowke, Simple theory of free-burning arcs, J. Phys. D. Appl. Phys, vol.12, issue.11, pp.1873-1886, 1979.

K. Ragaller, W. R. Schneider, and W. Hermann, A special transformation of the differential equations describing blown arcs, Angew. Math. und Phys. ZAMP, vol.22, issue.5, pp.920-931, 1971.

W. Hermann, U. Kogelschatz, K. Ragaller, and E. Schade, Investigation of a cylindrical, axially blown, high-pressure arc, J. Phys. D. Appl. Phys, vol.7, issue.4, pp.607-619, 1974.

W. Hermann, U. Kogelschatz, L. Niemeyer, K. Ragaller, and E. Schade, Experimental and theoretical study of a stationary high-current arc in a supersonic nozzle flow, J. Phys. D. Appl. Phys, vol.7, issue.12, pp.1703-1722, 1974.

C. Rehmet, Étude Théorique Et Expérimentale D'Une Torche Plasma Triphasée À Arcs Libres Associée À Un Procédé De Gazéification De Matière Organique, 2013.

J. J. Lowke, H. P. Kovitya, and P. Schmidt, Theory of free-burning arc-columns including the influence of the cathode, J. Phys. D. Appl. Phys, vol.25, pp.1600-1606, 1992.

J. P. Trelles, C. Chazelas, A. Vardelle, and J. V. Heberlein, Arc Plasma Torch Modeling, J. Therm. Spray Technol, vol.18, issue.5-6, pp.728-752, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00450921

J. P. Trelles, Computational study of flow dynamics from a dc arc plasma jet, J. Phys. D. Appl. Phys, vol.46, issue.25, p.255201, 2013.

P. Freton, J. J. Gonzalez, and A. Gleizes, Comparison between a two-and a three-dimensional arc plasma configuration, J. Phys. D. Appl. Phys, vol.33, issue.19, pp.2442-2452, 2000.

J. P. Trelles, E. Pfender, and J. Heberlein, Multiscale finite element modeling of arc dynamics in a DC plasma torch, Plasma Chem. Plasma Process, vol.26, issue.6, pp.557-575, 2006.

J. Mougenot, J. J. Gonzalez, P. Freton, and M. Masquère, Plasma-weld pool interaction in tungsten inertgas configuration, J. Phys. D. Appl. Phys, vol.46, issue.13, p.135206, 2013.

M. Baeva, M. S. Benilov, N. A. Almeida, and D. Uhrlandt, Novel non-equilibrium modelling of a DC electric arc in argon, J. Phys. D. Appl. Phys, vol.49, issue.24, 2016.

R. Bini, M. Monno, and M. I. Boulos, Numerical and experimental study of transferred arcs in argon, J. Phys. D. Appl. Phys, vol.39, issue.15, pp.3253-3266, 2006.

Y. Wu, Numerical analysis of the effect of the chamber width and outlet area on the motion of an air arc plasma, IEEE Trans. Plasma Sci, vol.36, issue.5, pp.2831-2837, 2008.

A. B. Murphy, M. Tanaka, K. Yamamoto, S. Tashiro, and J. J. Lowke, CFD MODELLING OF ARC WELDING -THE IMPORTANCE OF THE ARC PLASMA, p.6, 2009.

V. Colombo, E. Ghedini, M. Boselli, P. Sanibondi, and A. Concetti, 3D static and time-dependent modelling of a dc transferred arc twin torch system, J. Phys. D. Appl. Phys, vol.44, issue.19, p.194005, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00615137

F. Yang, Low-voltage circuit breaker arcs-simulation and measurements, J. Phys. D. Appl. Phys, vol.46, issue.27, p.273001, 2013.

W. C. Roman and T. W. Myers, Experimental investigation of an electric arc in transverse aerodynamic and magnetic fields, AIAA J, p.10, 1967.

D. H. Kihara, an Analytical Study of a Fluid Cylinder Model of an Electric Arc Balanced By Mutually Perpendicular Magnetic and Flow Fields, 1968.

P. F. Hodnett, Stationary Electric Arc in a Cross-Flow and Transverse Magnetic Field, Phys. Fluids, vol.12, issue.7, p.1441, 1969.

L. M. Nicolai, Properties of Magnetically Balanced Arcs, Phys. Fluids, vol.12, issue.10, p.2072, 1969.

V. R. Malghan and D. M. Benenson, Magnetically balanced cross-flow arcs, AIAA J, vol.10, issue.10, pp.1347-1349, 1972.

N. Sebald, Measurement of the temperature and flow fields of the magnetically stabilized cross-flow N2 arc, Appl. Phys, vol.21, issue.3, pp.221-236, 1980.

R. N. Szente, R. J. Munz, and M. G. Drouet, Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen, J. Phys. D. Appl. Phys, vol.21, issue.6, pp.909-913, 1988.

A. M. Essiptchouk, L. I. Sharakhovsky, and A. Marotta, New formula for the rotational velocity of magnetically driven arcs, J. Phys. D. Appl. Phys, vol.33, issue.20, pp.2591-2597, 2000.

S. W. Chau, K. L. Hsu, D. L. Lin, and C. C. Tzeng, Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air, J. Phys. D. Appl. Phys, vol.40, issue.7, pp.1944-1952, 2007.

V. Nemchinsky, Modeling Arc in Transverse Magnetic Field by Using Minimum Principle, IEEE Trans. Plasma Sci, vol.44, issue.11, pp.2932-2935, 2016.

J. Quéméneur, Etude des forces à l'origine du déplacement d'un arc électrique dans un disjoncteur basse-tension, 2016.

A. B. Murphy, Numerical Analysis of the Effect of the Chamber Width and Outlet Area on the Motion of an Air Arc Plasma, IEEE Trans. Plasma Sci, vol.36, issue.5, pp.2831-2837, 2008.

I. Dème, Contribution à la modélisation de l'écoulement dans un réacteur plasma pour la fabrication de noirs de carbone. Influence du rayonnement des particules de carbone, 2002.

J. A. Bakken, R. Jensen, B. Monsen, O. Raaness, and A. N. Waernes, Thermal plasma process development in Norway, Pure Appl. Chem, vol.70, issue.6, pp.1223-1228, 1998.

M. S. Benilov, Understanding and modelling plasma-electrode interaction in high-pressure arc discharges: A review, J. Phys. D. Appl. Phys, vol.41, issue.14, p.144001, 2008.

Y. Abdo, V. Rohani, F. Cauneau, and L. Fulcheri, New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields, J. Phys. D. Appl. Phys, vol.50, issue.6, p.65203, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01440832

Y. Abdo, V. Rohani, F. Cauneau, and L. Fulcheri, Nouvelles perspectives dans l'étude de la dynamique des arcs AC et DC soumis à des champs transversaux, 2017.

F. Maggioni and R. L. Ricca, On the groundstate energy of tight knots, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.465, issue.2109, pp.2761-2783, 2009.

H. O. Schrade, Stable Configuration of Electric Arcs in Transverse Magnetic Fields, IEEE Trans. Plasma Sci, vol.1, issue.3, pp.47-54, 1973.

G. Ruppeiner, Test of the Biot-Savart law to distances of 15 m, Am. J. Phys, vol.64, issue.6, p.698, 1996.

B. Ravary, L. Fulcheri, J. A. Bakken, G. Flamant, and F. Fabry, Influence of the Electromagnetic Forces on Momentum and Heat Transfer in a 3-Phase ac Plasma Reactor, vol.19, pp.69-89, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00542379

P. F. Hodnett, Stationary Electric Arc in a Cross-Flow and Transverse Magnetic Field, Phys. Fluids, vol.12, issue.7, p.1441, 1969.

. Edf, Code Saturne 5.0.0 Theory Guide, 2017.

H. L. Larsen, AC Electric Arc Models for a Laboratory Set-up and a Silicon Metal Furnace, 1996.

G. Saevarsdottir, High Current AC Arcs in Silicon and Ferrosilicon Furnaces, 2002.

M. S. Benilov and G. Naidis, What is the mathematical meaning of Steenbeck's principle of minimum power in gas discharge physics?, J. Phys. D. Appl. Phys, vol.43, issue.17, p.175204, 2010.

S. W. Churchill and M. Bernstein, A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow, J. Heat Transfer, vol.99, issue.2, p.300, 1977.

P. Gueye, Contribution to the development of a new high pressure plasma process for the production of syngas from CH4 and the retroconversion of CO2, 2017.

J. Quéméneur, P. Freton, M. Masquère, J. J. Gonzalez, and P. Joyeux, Cathode Arc Root Movement: Models Comparison, Plasma Phys. Technol, vol.2, issue.2, pp.187-190, 2015.

M. Lisnyak, THEORETICAL, NUMERICAL AND EXPERIMENTAL STUDY OF DC AND AC ELECTRIC ARCS, 2018.

Y. Abdo, V. Rohani, F. Cauneau, and L. Fulcheri, Analytical Solution for the Electric Arc Dynamics and Heat Transfer When Exposed to a Magnetic Cross-Field, J. Heat Transfer, vol.140, pp.1-11, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01653632

J. F. Lancaster, The Physics of Welding 2nd edn, 1986.

J. M. Bauchire, J. J. Gonzalez, and A. Gleizes, Modeling of a DC plasma torch in laminar and turbulent flow, Plasma Chem. Plasma Process, vol.17, issue.4, pp.409-432, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01762360

C. Baudry, A. Vardelle, G. Mariaux, M. Abbaoui, and A. Lefort, NUMERICAL MODELING OF A DC NON-TRANSFERRED PLASMA TORCH: MOVEMENT OF THE ARC ANODE ATTACHMENT AND RESULTING ANODE EROSION, High Temp. Mater. Process. (An Int. Q. High-Technology Plasma Process, vol.9, pp.1-15, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019717

B. S. Tomotika and T. Aoi, the Steady Flow of Viscous Fluid Past a Sphere and Circular Cylinder At Small, Quart. Journ. Mech. Appl. Math, vol.Ill, issue.1, 1950.

V. Nemchinsky, Temperature Created by a Moving Heat Source That Heats and Melts the Metal Plate (Plasma Arc Cutting), J. Heat Transfer, vol.138, issue.12, p.122301, 2016.

J. C. Gutiérrez-vega, R. M. Rodr??guez-dagnino, M. A. Meneses-nava, and S. Chávez-cerda, Mathieu functions, a visual approach, Am. J. Phys, vol.71, issue.3, pp.233-242, 2003.

D. Godin and J. Y. Trépanier, A robust and efficient method for the computation of equilibrium composition in gaseous mixtures, Plasma Chem. Plasma Process, vol.24, issue.3, pp.447-473, 2004.

P. Teulet, J. J. Gonzalez, A. Mercado-cabrera, Y. Cressault, and A. Gleizes, One-dimensional hydro-kinetic modelling of the decaying arc in air-PA66-copper mixtures: I. chemical kinetics, thermodynamics, transport and radiative properties, J. Phys. D. Appl. Phys, vol.42, issue.17, p.175201, 2009.

D. Hofsaess, Photoionization cross sections calculated by the scaled Thomas-Fermi method (hv ? 50 eV), At. Data Nucl. Data Tables, vol.24, issue.4, pp.285-321, 1979.

T. Billoux, Y. Cressault, and A. Gleizes, Net emission coefficient for CO-H<inf>2</inf> thermal plasmas with the consideration of molecular systems, J. Quant. Spectrosc. Radiat. Transf, vol.166, pp.42-54, 2015.

A. Gleizes, J. J. Gonzalez, A. Gleizes, B. Rahmani, M. Razafinimanana et al., Continuum absorption coefficient in SF 6 and SF 6 -N 2 mixture plasmas, 1989.

E. J. Robinson and S. Geltman, Single-and double-quantum photodetachment of negative ions, Phys. Rev, vol.153, issue.1, pp.4-8, 1967.

W. J. Karzas and R. Latter, Electron Radiative Transitions in a Coulomb Field, Astrophys. J. Suppl. Ser, vol.6, p.167, 1961.

R. Hannachi, Y. Cressault, P. Teulet, Z. Ben-lakhdar, and A. Gleizes,

, MgCl2/CaCl2/NaCl thermal plasmas, J. Phys. D. Appl. Phys, vol.41, issue.20, 2008.

A. Kramida and Y. Ralchenko, NIST Atomic Spectra Database, NIST Standard Reference Database 78, 1999.

R. Kurucz and B. Bell, Atomic Line Data (RL Kurucz and B. Bell) Kurucz CD-ROM No

M. Cambridge, Smithsonian Astrophysical Observatory, vol.23, 1995.

R. Hannachi, Y. Cressault, D. Salem, P. Teulet, L. Béji et al., Mean absorption coefficient of H 2 O-air-MgCl 2 /CaCl 2 /NaCl thermal plasmas, J. Phys. D. Appl. Phys, vol.45, issue.48, p.485206, 2012.

D. Salem, R. Hannachi, Y. Cressault, P. Teulet, and L. Béji, Radiative properties of argon-helium-nitrogencarbon-cobalt-nickel plasmas used in CNT synthesis, J. Phys. D. Appl. Phys, vol.48, issue.6, p.65202, 2015.

T. Billoux, Y. Cressault, and A. Gleizes, Tables of radiative transition probabilities for the main diatomic molecular systems of OH, CH, CH+, CO and CO+occurring in CO-H2syngas-type plasma, J. Quant. Spectrosc. Radiat. Transf, vol.133, pp.434-444, 2014.

J. J. Lowke, A relaxation method of calculating arc temperature profiles applied to discharges in sodium vapor, J. Quant. Spectrosc. Radiat. Transf, vol.9, issue.6, pp.839-854, 1969.

J. J. Lowke, Characteristics of radiation-dominated electric arcs, J. Appl. Phys, vol.41, issue.6, pp.2588-2600, 1970.

J. J. Lowke, Predictions of arc temperature profiles using approximate emission coefficients for radiation losses, J. Quant. Spectrosc. Radiat. Transf, vol.14, issue.2, pp.111-122, 1974.

R. W. Liebermann and J. J. Lowke, Radiation emission coefficients for sulfur hexafluoride arc plasmas, J. Quant. Spectrosc. Radiat. Transf, vol.16, issue.3, pp.253-264, 1976.

R. I. Solouchin, Handbook of radiative heat transfer in high temperature gases; Radiacionnyj teploperenos v vysokotemperaturnych gazach engl, 1987.

V. G. Sevastyanenko and J. A. Bakken, Radiative gas-dynamics in multicomponent plasma, Int. Cent. Heat Mass Transf, vol.28, issue.2, 1994.

Y. Abdo, V. Rohani, and L. Fulcheri, An optimal method for the computation of the parameter R s of the net emission coefficient approximation approach for determining the electrical and thermal characteristics of plasma arcs, J. Phys. D. Appl. Phys, vol.50, issue.44, p.445202, 2017.

K. C. Hsu, K. Etemadi, and E. Pfender, Study of the free-burning high-intensity argon arc, J. Appl. Phys, vol.54, issue.3, pp.1293-1301, 1983.

K. C. Hsu and E. Pfender, Modeling of a free-burning, high-intensity arc at elevated pressures, Plasma Chem. Plasma Process, vol.4, issue.3, pp.219-234, 1984.

M. Lisnyak, M. D. Cunha, J. M. Bauchire, and M. S. Benilov, Numerical modelling of high-pressure arc discharges: Matching the LTE arc core with the electrodes, J. Phys. D. Appl. Phys, vol.50, issue.31, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01762324

P. Kovitya and J. J. Lowke, Two-dimensional analysis of free burning arcs in argon, J. Phys. D. Appl. Phys, vol.18, issue.1, pp.53-70, 1985.

A. Gleizes, J. J. Gonzalez, and P. Freton, Thermal plasma modelling, J. Phys. D. Appl. Phys, vol.38, issue.9, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00368505

J. P. Trelles, Advances and challenges in computational fluid dynamics of atmospheric pressure plasmas, Plasma Sources Sci. Technol, pp.0-19, 2018.

J. A. Bakken, L. Gu, H. L. Larsen, and V. G. Sevastyanenko, Numerical modeling of electric arcs, J. Eng. Phys. Thermophys, vol.70, issue.4, pp.530-543, 1997.

C. Rehmet, F. Fabry, V. Rohani, F. Cauneau, and L. Fulcheri, Unsteady state analysis of free-burning arcs in a 3-Phase AC plasma torch: Comparison between parallel and coplanar electrode configurations, Plasma Sources Sci. Technol, vol.23, issue.6, p.65011, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086921

C. Rehmet, V. Rohani, F. Cauneau, and L. Fulcheri, 3D unsteady state MHD modeling of a 3-phase AC hot graphite electrodes plasma torch, Plasma Chem. Plasma Process, vol.33, issue.2, pp.491-515, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00783778

M. S. Benilov and A. Marotta, A model of the cathode region of atmospheric pressure arcs, J. Phys. D. Appl. Phys, vol.28, issue.9, pp.1869-1882, 1995.

S. V. Patankar, Numerical heat transfer and fluid flow, 1980.

A. Ern and J. Guermond, Theory and Practice of Finite Elements, vol.159, 2004.

A. Ern, Aide-mémoire Eléments Finis, 2006.

V. John, Finite Element Methods for Incompressible Flow Problems, vol.51, 2016.

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng, vol.32, issue.1-3, pp.199-259, 1982.

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM J. Numer. Anal, vol.39, issue.5, pp.1749-1779, 2002.

T. J. Hughes, G. R. Feijóo, L. Mazzei, and J. Quincy, The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng, vol.166, issue.1-2, pp.3-24, 1998.

G. Hauke and T. J. Hughes, A comparative study of different sets of variables for solving compressible and incompressible flows, Comput. Methods Appl. Mech. Eng, vol.153, issue.1-2, pp.1-44, 1998.

H. J. Merk, The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems, Appl. Sci. Res, vol.8, issue.1, pp.73-99, 1959.

R. S. Devoto, Transport coefficients of partially ionized argon, Phys. Fluids, vol.10, issue.2, pp.354-364, 1967.

R. S. Devoto, Transport properties of ionized monatomic gases, Phys. Fluids, vol.9, issue.6, pp.1230-1240, 1966.

M. Kuczmann, Potential Formulations in Magnetics -Applying the Finite Element Method, pp.1-224, 2009.

L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput, vol.54, issue.190, pp.483-483, 1990.

J. Huang and S. Zhang, A divergence-free finite element method for a type of 3D Maxwell equations, Appl. Numer. Math, vol.62, issue.6, pp.802-813, 2012.

S. Zhang, On the full C1-Qk finite element spaces on rectangles and cuboids, Adv. Appl. Math. Mech, vol.2, issue.6, pp.701-721, 2010.

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, vol.40, 2002.

J. Morgan and R. Scott, A Nodal Basis for C 1 Piecewise Polynomials of Degree n ?5, Math. Comput, vol.29, issue.131, p.736, 1975.

J. C. Nedelec, Mixed finite elements in 3, Numer. Math, vol.35, issue.3, pp.315-341, 1980.

D. Boffi, F. Brezzi, and L. Gastaldi, On the convergence of eigenvalues for mixed formulations, Ann. Sc. Norm. Sup. Pisa Cl. Sci, vol.25, issue.1-2, pp.131-154, 1997.

P. Ciarlet, Edge Element Methods for Maxwell ' s Equations with Strong Convergence for Gauss ' Laws To cite this version : HAL Id : hal-01112201 Edge Element Methods for Maxwell ' s Equations with Strong Convergence for Gauss ' Laws, 2015.

J. Gopalakrishnan and J. E. Pasciak, The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations, Math. Comput, vol.75, issue.256, pp.1697-1719, 2006.

S. Kurz and S. Russenschuck, Accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets using the BEM-FEM coupling method, Proc. 1999 Part. Accel. Conf. (Cat. No.99CH36366), vol.4, pp.2796-2798, 1999.

J. P. Van-doormaal and G. D. Raithby, Enhancements Of The SIMPLE Method For Predicting Incompressible Fluid Flow, Numer. Heat Transf, vol.7, pp.147-163, 1984.

B. R. Hutchinson and G. D. Raithby, A multigrid method based on the additive correction strategy, Numer. Heat Transf, vol.9, issue.5, pp.511-537, 1986.

J. Haidar and A. J. Farmer, Large effect of cathode shape on plasma temperature in high-current freeburning arcs, J. Phys. D. Appl. Phys, vol.27, issue.3, pp.555-560, 1994.

M. S. Benilov and M. D. Cunha, Heating of refractory cathodes by high-pressure arc plasmas: I, J. Phys. D. Appl. Phys, vol.35, issue.14, p.314, 2002.

M. S. Benilov, M. D. Cunha, and G. V. Naidis, Modelling interaction of multispecies plasmas with thermionic cathodes, Plasma Sources Sci. Technol, vol.14, issue.3, pp.517-524, 2005.

N. A. Almeida, M. S. Benilov, and G. V. Naidis, Unified modelling of near-cathode plasma layers in highpressure arc discharges, J. Phys. D. Appl. Phys, vol.41, issue.24, 2008.

M. S. Benilov and M. D. Cunha, Bifurcation points in the theory of axially symmetric arc cathodes, Phys. Rev. E -Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top, vol.68, issue.5, pp.1-11, 2003.

M. S. Benilov, Interaction of High-Pressure Arc Plasmas with Thermionic Cathodes

N. Nikitin, Finite-difference method for incompressible Navier-Stokes equations in arbitrary orthogonal curvilinear coordinates, J. Comput. Phys, vol.217, issue.2, pp.759-781, 2006.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, with Gormulas, Graphs, and Mathematical Tables, p.9, 1972.