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Abstract

Tectonic faults release elastic energy supplied by plate motion by a large spectrum of slip phenom-
ena, ranging from continuous slow (cm/yr) creep to fast (m/s) slip events known as earthquakes.
Decades of geodetical and seismological monitoring of fault slip have revealed in many active areas
complex succesions of interacting fault slip events at different scales. Despite this apparent com-
plexity, fault slip seems to obey rather simple scalings and statistical laws (Gutenberg-Richter
magnitude-frequency distribution, Omori law, moment-duration scaling). Another important
discovery about fault slip events is the ubiquitous imbrication between slow aseismic slip, radia-
tive events and fluid flow. The important role of fluids in fault slip processes is in particular
suggested by the numerous examples of seismicity induced by reservoir exploitation. Despite the
considerable amount and the high quality of observations, we currently lack important aspects
of the mechanical control on fault slip. First, because the mechanisms triggering fault slip (tec-
tonic stress accumulation, deep pore pressure variations, stress redistributions between faults,
aseismic slip) are poorly quantified. Then, because of our partial knowledge of the physical laws
controlling fault slip, generally upscaled from laboratory experiments.

My research activities aim at improving our understanding of the mechanical control of slip
by the use of fault models coupling elasticity, friction and fluids. In this manuscript, I present
how such models could help to address the unresolved issues about fault slip. The first part
is dedicated to the question of what mechanical parameters control the scaling and statistical
relationships characterizing slip events at the scale of a planar fault undergoing slow tectonic
loading. The crucial role played by prestress and frictional heterogeneity in controlling magni-
tude distribution, Omori decay, moment duration scaling and slip acceleration are discussed. In
a second chapter, I present several studies dedicated to the quantification of the deep processes
trigerring fault slip events, in particular aseismic slip and fluid flow. Two approaches are pre-
sented, one relying on the direct modeling of particular swarms, with two examples from the
Corinth rift (Greece), the second one based on the derivation of general relationships between
mechanical loading and fault slip properties.

The specificity of my research probably resides in the systematic search for relationships
between observed quantities and well defined mechanical parameters, that is physical properties
of geological material that could be measured in a laboratory. For that purpose, the results
of my numerical models are always confronted to observations, and supported by asymptotic
theoretical developments as far as possible.

In the final chapter, some perspectives are presented to extend and improve the study of
fault slip mechanical control. The projects discussed all aim at developing the use of mechanical
models for fault slip data interpretation. I propose to pursue the modeling of seismological data
initiated in the Corinth rift, and to develop the modeling of laboratory fault slip experiments.
In the perspective of connecting laboratory and natural observations, my research projects also
involve the study of effective frictional properties. The common objective of these projects is to
develop a strong theoretical background for mechanical interpretation of fault slip phenomena,
and for the quantification of the deep mechanisms driving fault slip.
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Chapter 1

Introduction

1.1 Fault slip observations

1.1.1 Scaling and statistical laws

Tectonic faults release accumulated energy through slip events, either fast (slip rate of the order
of m.s−1) or slow (slip rate of the order of several cm.yr−1 to several m.yr−1). The monitoring
of active tectonic faults has allowed to detect, to locate and analyze a wide range of such events:
regular earthquakes, postseismic slip (Langbein, 1990; Schaff et al. , 1998), aseismic creep (Wes-
son, 1988), slow slip events (SSE) (Dragert et al. , 2001), tectonic tremor (Obara, 2002; Nadeau
& Dolenc, 2005), episodic tremor and slip (Rogers & Dragert, 2003; Obara et al. , 2004), low
frequency earthquakes (LFE) (Shelly et al. , 2006; Ide et al. , 2007a), very low frequency earth-
quakes (VLFE) (Obara & Ito, 2005). All these events were originally detected as deformation
signals at the earth surface, having different amplitudes, durations, and characteristic frequen-
cies. Later they have been recognized as resulting from shear slip on preexisting faults (Shelly
et al. , 2006; Ide et al. , 2007a; Peng & Gomberg, 2010).

What mechanics governs the evolution of fault slip, and leads to either fast or slow events,
is a major question that is not yet fully addressed. To answer this question, the geophysical
community has analyzed the deformation and the elastic waves generated by faults to determine
different parameters characterizing the slip process: fault orientation and size, seismic moment
released, stress drop, slip rate, amount of slip, expansion (rupture) speed and duration. This
approach is facilitated when the slip events are large enough, or enough impulsive to generate
significant deformation and wave radiation. The most impulsive ones (regular earthquakes) have
been the first to be considered. Slow events (SSE, LFE and VLFE) have only been discovered
and analyzed in the past twenty years.

The main outcomes resulting from source process analysis are characteristic scaling laws.
First, the stress drop ∆τ of earthquakes is to the first order constant (Abercrombie, 1995; Ide &
Beroza, 2001; Allmann & Shearer, 2009; Baltay et al. , 2010) over a wide range of magnitudes
(figure 1.1). Some observations also report a constant stress drop for slow slip events, but over
a much limited range of magnitudes (Schmidt & Gao, 2010). The stress drop associated with
slow events is also generally smaller than for regular earthquakes (100 times smaller in the case
of Cascadia SSEs). Recent observations and models suggest that the stress drop may increase
with magnitude for slow slip events (Dal Zilio et al. , 2020).

Then, all slip events are characterized by a power law relationship between the seismic mo-
mentM0 and the duration T (figure 1.2). For regular earthquakes, the seismic moment increases
as T 3, which could be understood as a signature of quasi constant rupture speed vr if stress
drop is scale invariant. Concerning slow events, they have first been claimed to follow a linear
moment-duration scaling (Ide et al. , 2007b; Peng & Gomberg, 2010) (figure 1.2). But several
recent studies suggest the same scaling as regular earthquakes, both from observations (Gomberg
et al. , 2016; Michel et al. , 2019), and from mechanical fault models (Dal Zilio et al. , 2020).

10



Chapter 1. Introduction 1.1. Fault slip observations

Figure 1.1: Earthquake self-similarity over a wide range of magnitudes. m0, Mw and fc are the
seismic moment, the moment magnitude and the corner frequency. Corner frequency is a proxy
for inverse rupture duration. Red dashed lines indicate m0, fc relationship assuming constant
stress drop. From Allmann & Shearer (2009)

The main difficulties arising when analyzing moment duration scaling of slow slip events are the
observational gaps and the limitations in the magnitude range covered by individual studies.

Another interesting scaling law characterizes a particular type of earthquakes called repeating
earthquakes. Such events are observed on many tectonic faults and subduction zones all over
the world, and correspond to the repetitive activation of the same fault patch (Poupinet et al.
, 1984; Nadeau et al. , 1995; Nadeau & McEvilly, 1997; Nadeau & Johnson, 1998; Bürgmann
et al. , 2000; Chen et al. , 2007). The recurrence time of failure Tr is typically observed to scale
as M1/6

0 , M0 being the seismic moment (figure 1.3).
Beyond the analysis of individual source processes, the interactions occurring between differ-

ent slip events have received lots of attention. One of the most simple example is the occurrence
of main shock-aftershock sequences, where a large earthquake triggers other smaller events, each
of them generating its own sequence in a cascading process. This issue is commonly analyzed
using statistical approaches, aiming at decrypting the spatio temporal structure of sequences of
slip events, and the structure of the associated energy release. In the case of regular earthquakes,
the statistical approach has allowed to define four empirical laws.

The first one illustrated in figure 1.4 is named Gutenberg-Richter law (Gutenberg & Richter,
1944). It states that the magnitudes of earthquakes occurring in a bounded spatio temporal
region follow a power law distribution of the form:

N(m) = 10k−bm, (1.1)

where N(m) is the number of events with magnitude exceeding m, k is a constant depending
on the catalog analyzed, and b a decay exponent, typically ranging from 0.5 to 2 (El-Isa & Eaton,
2014).

11



Chapter 1. Introduction 1.1. Fault slip observations

Figure 1.2: Earthquake and slow slip moment-duration scaling. From Peng & Gomberg (2010)

Figure 1.3: Recurrence time vs. seismic moment for several repeating earthquake sequences in
California, Japan and Taïwan. From Chen et al. (2007)

The second well established statistical law of earthquakes interaction is the Omori decay of
aftershock sequences (Omori, 1894; Utsu et al. , 1995). Following a main shock, the rate of
aftershocks Ra decays as an inverse power law of time. Generally, we have:

Ra(t) =
Ka

(ca + t)pa
, (1.2)

where t is the time from the main shock, ca is a characteristic time marking the onset of
power law decay, Ka measures the productivity of events, and pa the decay exponent. Analysis

12



Chapter 1. Introduction 1.1. Fault slip observations

Figure 1.4: Magnitude-frequency distributions for earthquakes in California showing the
Gutenberg-Richter decay. The b-value here depends on the depth of earthquakes. From Spada
et al. (2013)

of earthquake catalogs show that pa typically varies between 0.9 and 1.5 (Utsu et al. , 1995),
and increases with main shock magnitude (Ouillon & Sornette, 2005; Hainzl & Marsan, 2008).
The productivity Ka of aftershock sequences is also known to increase exponentially with the
main shock magnitude (Console et al. , 2003; Helmstetter, 2003; Felzer et al. , 2004; Helmstetter
et al. , 2005; Zhuang et al. , 2004, 2005; Hainzl & Marsan, 2008). An example of Omori decay
of aftershock rate is presented in figure 1.5. The largest aftershock of the sequence is in general
one point of magnitude lower than the main shock (this result is known as the Bath’s law).

Foreshocks (when observed) also follow a similar Omori law, in the sense that the rate of
events during foreshock sequences increases as a power law of time prior to the main shock
(Jones & Molnar, 1979; Bouchon et al. , 2013). The acceleration of foreshock production prior
to large interplate earthquakes is illustrated in figure 1.6.

More generally, the study of earthquake swarms and background activity (where no main
shock aftershock sequences could be defined) has demonstrated that the time delays separating
successive events follow a gamma distribution, where the power law decay at short time is an
indicator of the degree of clustering in the sequence (Hainzl et al. , 2006). Examples of such
distributions for earthquakes in California are shown in figure 1.7.

In addition to the temporal statistics and magnitude statistics, the interaction between earth-
quakes is characterized by influence kernels decaying as inverse power laws of the distance and
time (Marsan & Lengline, 2008). An interaction kernel could be seen as the intensity of direct,
or indirect seismic activity triggered by a particular event. Intensities estimated from California
seismicity are illustrated in figure 1.8. The temporal component is essentially the Omori law.
The spatial component could be seen as the signature of the decay of elastic stress (static and

13



Chapter 1. Introduction 1.1. Fault slip observations

Ra

na(t)

Figure 1.5: Rate Ra(t) and cumulative number na(t) of of aftershocks felt at Gifu after the Nobi
earthquake in 1891. t is time from the main shock. Dots in the top figure are observations. The
smooth line is a fit of the rate of aftershocks using the Omori law (1.2) with pa = 1. From Utsu
et al. (1995).

Figure 1.6: Acceleration of foreshock production prior to large interplate earthquakes. The red
line is a stack of several sequences, the blue line is a prediction of an ETAS model. From Bouchon
et al. (2013)
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Chapter 1. Introduction 1.1. Fault slip observations

Figure 1.7: Distributions of interevent time delays for two regions in California (black and gray
symbols). The fits with a gamma distribution (corresponding to 11 % and 47 % of main shocks
in the catalog) are shown by the solid lines. From Hainzl et al. (2006).

dynamic) redistribution with distance associated with elastic dislocations and cracks involved in
earthquake sources.

All these empirical statistical laws are well documented for regular earthquakes, and could
be seen as a consequence of stress redistribution between earthquakes. However, the underlying
mechanics is still poorly understood. Many mechanisms are identified as playing a role in this
redistribution: static stress transfers (King et al. , 1994; Toda et al. , 1998), dynamic (wave-
mediated) stress transfers (Brodsky et al. , 2000; Kilb et al. , 2000; Felzer & Brodsky, 2006),
imbricated slow aseismic slip and postseismic slip (Schaff et al. , 1998; Perfettini & Avouac,
2004), poroelastic effects associated with fluid flow at depth (Bosl & Nur, 2002). However, the
attempts to relate empirical parameters appearing in the statistical laws to mechanical param-
eters remain extremely limited. The b-value of Gutenberg Richter decay as been proposed to
follow a linear relationship with differential stress on the basis of laboratory experiments (figure
1.9) (Amitrano, 2003; Scholz, 2015) and on the observation of b-value dependence with depth
and faulting mechanism (figure 1.4) (Schorlemmer et al. , 2005; Spada et al. , 2013), but this
observation is not supported by a general theory. One of the most advanced attempts to relate
statistical properties to mechanical parameters is the model proposed by Dieterich (1994) leading
to a relationship between Omori law parameters and frictional parameters characterizing tectonic
faults.

The interaction between other types of slip events seems to lead to similar statistics. In
particular, the duration of tremor bursts and the magnitude of slow slip events in Cascadia
subduction zone follow a Gutenberg-Richter like distribution (Wech et al. , 2010; Michel et al. ,
2019), as illustrated in figure 1.10.

Furthermore, the low frequency earthquakes (LFE) bursts observed during slow slip events
seem also to follow the same spatio-temporal statistics as regular earthquakes (Lengliné et al.
, 2017a), in the sense that interaction kernels decay as power laws of time from a main event
(figure 1.11). Here again, the mechanics generating these statistics is still poorly understood.
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Figure 1.8: Temporal rates and densities of aftershocks characterizing seismicity in California,
for different main shock magnitudes m. A and B are bare kernels representing the direct after-
shocks of a particular event. C and D represent the observed dressed kernels, accounting for all
the indirectly triggered events of a particular main shock. Dashed colored lines represent the bare
kernels of figure A and B. Black dashed lines are power law fits to the estimated kernels. From
Marsan & Lengline (2008).

1.1.2 Imbricated slip : seismic, aseismic and fluids

A particularly interesting observation is the common imbrication of different types of slip events
on the same tectonic fault. Many earthquakes are for instance associated with aseismic slip
episodes. Large earthquakes are often followed by postseismic slip that activates nearby regions
of the earthquake source, several days to several years after the main event (Langbein et al. , 1983;
Savage et al. , 1994; Bürgmann et al. , 1997; Cakir et al. , 2003; Ozawa et al. , 2011). Postseismic
slip rate usually follows an Omori law. Many studies also report evidences for accelerating
aseismic slip before large and moderate earthquakes. This has been shown in particular before
moderate earthquakes in California (Dodge et al. , 1996), before the 2011 Tohoku earthquake in
Japan (Kato et al. , 2012), before the 2014 Iquique earthquake in Chile (Ruiz et al. , 2014), and
more generally for large interplate (subduction) earthquakes (Bouchon et al. , 2013).

Note also that repeating earthquakes could be interpreted as the repetitive failure of a brittle
asperity loaded by slow aseismic slip. Here again, slow slip and seismic slip (earthquakes) closely
interact. The seismic activity generated by a population of repeating earthquake sources is
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Figure 1.9: b-value dependence with differential stress. From Scholz (2015).

a. b.

Figure 1.10: a. Slow slip events (SSE, colored patches) and tremor bursts (black dots) in Cas-
cadia subduction zone. b. Two estimations of the magnitude-frequency distribution of SSEs in
Cascadia. From Michel et al. (2019).

generally affected by stress transfers mediated by fault creep (Chen et al. , 2013).
Another interesting example of imbrication comes from the so called Episodic Tremor and

Slip (ETS) that periodically activate the Cascadia and Japanese subduction zones (Rogers &
Dragert, 2003; Obara et al. , 2004). ETS consist of the propagation of large slow slip fronts
, (strong enough to be detected by geodetic methods) associated with tremor bursts. These
tectonic tremor bursts are made of a superposition of smaller but faster (and thus more radiative)
slip events called low frequency earthquakes. The sources of tremor are generally co-located with
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Figure 1.11: Interaction kernel g(t) for families of low frequency earthquakes (LFE) in Cascadia,
Mexico and California. t is time from the main event. From Lengliné et al. (2017a).

slow slip fronts (Bartlow et al. , 2011), and the two processes are therefore strongly related.
Geophysical studies conducted over the past decades have also shown that fluids often play a

significant role in the trigerring and development of fault slip. This is in particular suggested by
the various seismic sequences induced by fluid operations at depth performed in the framework
of georessources exploitation (hydro-fracturation, waste-water disposal, geothermal exploitation,
reservoir lake impoundment etc.) (Shapiro et al. , 2006; Deichmann & Giardini, 2009; Shapiro &
Dinske, 2009a; Dinske et al. , 2010; Ellsworth, 2013; Diehl et al. , 2017). Fluid induced seismicity
could be triggered if pore pressure reduces the effective normal stress on critical faults (i.e.
being critically stressed by tectonic forces) and brings them closer to the reactivation threshold
(Mohr-Coulomb criterion for instance). Fluids are also strongly suspected to drive many natural
micro-seismic sequences: this is for instance the case for swarms in the Corinth Rift (Bourouis
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& Cornet, 2009; Duverger et al. , 2015; De Barros et al. , 2020) and in western Bohemia (Hainzl
& Fischer, 2002; Hainzl et al. , 2012). This idea is further supported by observations of seismic
swarms triggered by rainfall events (Kraft et al. , 2006).

In situ fluid injection experiments into tectonic faults (Guglielmi et al. , 2015) have fur-
thermore demonstrated that fluids do not only trigger earthquakes but also aseismic slip on
preexisting faults. Detailed analysis of induced earthquake sequences have furthermore shown
that fluid injections generally result in aseismic slip and earthquakes (Bourouis & Bernard, 2007;
Lengliné et al. , 2017b; De Barros et al. , 2019, 2020). The mechanism suggested by these latter
observations consists of a slow (aseismic) slip front triggered by the fluid injection, with earth-
quakes being the byproduct of slow slip. For many fault slip phenomena, an imbrication between
fluid flow, slow slip and rapid slip (earthquakes) is therefore suspected.

Although slow slip and fluid flow seem to be crucial in the processes releasing energy on
tectonic faults, they tend to be more difficult to observe than regular earthquakes. This is
mainly because both slow slip and fluid flow generate weaker deformation signals, and do not
radiate strong elastic waves. This is particularly true when they occur at important depths. The
imbrication of slow slip and fluid flow with more radiative events (regular and/or low frequency
earthquakes) allows to use the dynamic radiative events to monitor the silent deformation at
depth. This is what is usually done when slip on repeating earthquakes is used to estimate creep
rate at depth (Uchida et al. , 2003), or when tectonic tremor and LFEs are used to detect slow
slip events on tectonic faults (Frank, 2016; Rousset et al. , 2019).

1.1.3 Mechanical control

The observations summarized in the first section of this manuscript show that many unresolved
questions remain concerning the quantification and the mechanical control of fault slip phenom-
ena. Two subjects deserve particular attention:

1. What is the mechanical control of tectonic fault slip process and empir-
ical scaling laws parameters?

2. What does seismic activity, and more generally radiative slip events
reveal on silent slow slip process and fluid flow at depth?

These two questions have been at the core of my research activities over the past years. In
order to explore them, I have developed and extensively used physics-based fault models, and
performed some theoretical developments. All the numerical and theoretical results are discussed
and compared to observations of fault slip. During this period, I have also been involved in
different analysis of seismological data, and in one laboratory study, that are included in the
following chapters.

In the next section, I will show what mechanical models could bring to our understanding of
fault slip phenomena, and I will present the class of models I have been developing.

1.2 Mechanical models of faults

1.2.1 Conceptual model : creep and asperities

The observations of imbricated slow and seismic slip suggest the conceptual model of heteroge-
neous tectonic fault illustrated in the central diagram of figure 1.12. In this model, earthquakes,
and more generally radiative (or fast) slip events result from the failure of brittle asperities
embedded in a more ductile material, that creeps under tectonic loading associated with plate
motion.

The heterogeneity of fault material is also suggested by outcrops of exhumed fault cores
showing a mixture of brittle blocs of different sizes distributed in a ductile material (Fagereng
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& Sibson, 2010). The asperity model could also explain the interseismic slip pattern shown by
geodetic estimates of coupling along subduction interfaces (Yoshioka et al. , 1993; Vigny et al. ,
2009; Métois et al. , 2012).

Geologic evidences suggest also that the fault material is permeable (Faulkner et al. , 2010), so
that fluids can eventually flow and modify the stresses on the creeping sections and on asperities.

1.2.2 Elasticity and friction

One way to model fault slip is to consider faults as systems coupling elasticity, friction and fluids.
Elasticity is what allows crustal rocks to store energy supplied by plate motion, and friction is
what controls the way this energy is released through slip events.

The first attempts to model fault slip are the Burridge-Knopoff models (Burridge & Knopoff,
1967; Carlson et al. , 1994). They consist of arrays of sliders related by springs and pulled at
a constant rate on a planar support. Many different frictional laws have been considered in
the literature. The main outcome of these models is their ability to reproduce cascades of slip
events following a Gutenberg-Richter statistics. However such models ignore important aspects
of the physics of fault slip. In particular, the use of springs prevents the occurrence of long
range stress transfers expected to occur in the brittle crust. A different approach developed
at the same period is the model by Dieterich (1994) assuming a population of non-interacting
spring and sliders obeying a rate-and-state friction law (Dieterich, 1979; Ruina, 1983). This
model has been one of the only models providing an interpretation of the decay exponent of the
Omori law in terms of frictional parameters. However, stress transfers are neglected, and no
magnitude could be predicted in this model. Note also that spring and slider models reproduce
the slip rate associated with postseismic slip (Marone et al. , 1991; Perfettini & Avouac, 2004)
and more generally are able to produce the full range of slip rate observed during fault slip events
(Helmstetter & Shaw, 2009).

Later models have been developed consisting in a frictional interface between continuous elas-
tic media (Dieterich, 1992; Rice, 1993; Lapusta et al. , 2000). Here again, different friction laws
could be used, calibrated on rock friction experiments. Such models were successful in reproduc-
ing many features of tectonic fault slip: coseismic rupture (Geubelle & Rice, 1995; Cochard &
Rice, 1997; Madariaga et al. , 1998; Lapusta et al. , 2000; Ide & Aochi, 2005; Gallovič et al. ,
2019; Ulrich et al. , 2019), earthquake nucleation (Dieterich, 1992; Favreau et al. , 1999; Rubin &
Ampuero, 2005; Ampuero & Rubin, 2008), postseismic slip (Perfettini & Ampuero, 2008). At the
scale of the earthquake cycle, these models are known, under rate-and-state friction (Dieterich,
1979), to generate cycles of characteristic earthquakes, and thus provide a good model for repeat-
ing earthquakes (Chen & Lapusta, 2009; Cattania & Segall, 2019). moment-duration scaling,
and moment-recurrence scaling are also generally reproduced. However, earthquake complexity
and the earthquake statistical laws (in particular Omori law and Gutenberg-Richter law) are dif-
ficult to obtain with such models, unless the continuum limit is exceeded and the model becomes
similar to a spring and slider array (Rice, 1993), or a certain amount of frictional heterogeneity is
introduced (Ide & Aochi, 2005). Recently, it has been shown that some complexity could arise if
the fault length is much larger than the critical nucleation length allowing instabilities to develop
(Cattania, 2019).

The collection of models coupling elasticity and friction developed over the past decades
therefore reproduce most of the phenomenology about slip events. Considering the whole spec-
trum of models, the whole range of fault slip rate has been obtained, some scaling laws have been
reproduced (constant stress drop, moment-duration scaling for earthquakes and slow slip events,
some of the statistical laws). However, some observations still remain unexplained by current
models. More importantly, the mechanical control on fault slip characteristics is generally not
really understood. Most of the modeling studies do not propose a systematic study of what
mechanical parameter is crucial in reproducing a particular observation. This is particularly
the case for statistical laws reflecting interaction (Omori and Gutenberg Richter) and for scaling
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laws (moment-duration and moment-recurrence), where observed tendencies are not explained in
terms of mechanical parameters. Many processes are (for the same reason) not fully understood,
in particular what controls the rupture speed and the stress drop during slip events on faults.

1.2.3 Using fault models to study mechanical control of fault slip

The fault models I have been developing to study fault slip belong to the category of models
coupling elasticity and laboratory derived rate-and-state friction (Dieterich, 1979) at the scale
of a planar fault. They are coupled, when necessary, to fluid diffusion. A summary of all the
models discussed in this manuscript is presented in figure 1.12. In the following chapters, I will
refer to this figure for each numerical study developed.

The rate-and-state friction law assumes that friction evolves with instantaneous slip rate v
and past slip history along the fault. In this framework, the friction coefficient f could be written
as (Dieterich, 1979):

ff = f0 + a ln
v

v∗
+ b ln

v∗θ
dc
, (1.3)

where f0, a, b are dimensionless coefficients, dc is a critical slip distance and v∗ a reference
slip rate. The dependence on slip history is captured by the state variable θ with dimensions of
time. The evolution of θ is given by a state evolution law (Ruina, 1983) that can take different
forms. The most popular state evolution laws are the aging and slip laws:





θ̇ = 1− vθ

dc
, "aging law"

θ̇ = −vθ
dc

ln
vθ

dc
, "slip law"

(1.4)

At steady state (θ̇ = 0), the friction coefficient fss only depends on slip rate v:

fss = f0 + (a− b) ln
v

v∗
. (1.5)

It can be shown that when coupled to an elastic system, frictional instabilities (or slip accel-
eration) only develop when a − b < 0. This is called velocity weakening friction, since steady
state friction coefficient decreases with increasing slip rate. Slip acceleration then occurs on a
fault patch of characteristic length Lc (Dieterich, 1992; Rubin & Ampuero, 2005), so that such
instabilities are only possible on faults larger than Lc. For that reason, Lc is called the critical
nucleation length. Earthquakes could be seen as frictional instabilities bringing faults from slow
to fast slip.

When a− b > 0 on the other hand, slip is stable. From equation (1.5), this behavior is called
velocity strengthening, and could be used to model stable creep and slow aseismic slip.

Importantly, rate-and-state friction allows for frictional healing, that is increase of frictional
strength when fault slip is negligible. As illustrated by the aging law in equations (1.4), θ
increases linearly with time when the slip rate v is negligible, so that friction coefficient increases
with the logarithm of time. This property allows to produce successions of frictional instabilities
under slow tectonic loading, or in other words earthquake cycles.

Because it allows for rapid slip, slow asesimic slip, and earthquake cycles, rate-and-state
friction is a good candidate to model fault slip processes. This is the reason why the majority
of the models discussed here (figure 1.12) are based on rate-and-state friction.

As illustrated in figure 1.12, models were either 2D (i.e. 1D fault within a 2D elastic medium)
or 3D (i.e. 2D fault within a 3D elastic medium). Whenever simulations are performed to study
magnitudes and seismic moments, 3D models are more suitable, because they allow to compute
those quantities without making any approximations. 3D simulations could however be extremely
time consuming, in particular when long earthquake sequences are needed to analyze statistics.
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For that reason, some of the parametric studies shown here were conducted with 2D simulations.
Most of the time, the question remains whether the results could be extended to 3D, and as far
as possible this issue is discussed.

The different models also consider either constant, homogeneous friction, or heterogeneous
friction. In many situations, I have modeled the fault material heterogeneity as heterogeneities
in the a− b rate-and-state frictional parameter. This allows to generate both unstable (velocity
weakening a − b < 0) and stable (velocity strengthening a − b > 0) frictional behavior on the
same fault. Seismogenic asperities (brittle asperities) are typically modeled as velocity weakening
patches distributed on a velocity strengthening region, subject to stable creep. The velocity
strengthening regions on the fault are also called barriers hereafter. As shown later, the fault
material heterogeneity has also been modeled with non uniform critical slip distance dc.
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Figure 1.12: Asperity models. In these models, a fault is a frictional planar interface embedded
in an elastic medium. The fault is loaded by a normal stress σ and a remote shear stress τb of
tectonic origin. A far field constant deformation rate vb is sometimes assumed. The interface is
also possibly permeated with a diffusing fluid at pressure P . Slip δ along the fault is resisted by
rate-and-state friction (equation 1.3). Brittle asperities (dark gray patches) are distributed on the
interface. Possible distributions of asperity sizes R and critical slip distances dc are illustrated in
the bottom diagrams. The different types of frictional heterogeneity discussed in this manuscript
are illustrated in the diagrams a, b, c and d (3D models) and a’, b’ and c’ (2D models).
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In computing the stress redistributions along the fault, I essentially made use of the quasi-
dynamic approximation originally proposed by Rice (1993). Under this assumption, the elastic
shear stress on the fault τe (that has to be balanced by frictional stress) could be written in the
form:

τe = τb +K ∗ (δ − vbt)− ηv, (1.6)

where, τb incorporates the far field loading, the second term on the right hand side corresponds
to the static component of stress, and the last term approximately accounts for elastic wave
radiation from the fault. The static term involves a stress kernel K that depends on the geometry
of the problem (half spaces or finite thickness slabs in contact, periodic or non periodic fault)
and the reduced slip δ − vbt (the star denotes a spatial convolution). The last term involves the
slip rate v and the radiation damping η defined as:

η =
µ

2cs
, (1.7)

where µ and cs are the shear modulus and the shear wave speed of the elastic media in contact.
Pore pressure is generally considered through an effective normal stress σ − P . The numerical
approach consists of finding the fault slip history that satisfies the following shear stress balance:

τe = ff (σ − P ). (1.8)

In the following chapters, I will show how such models could be used to investigate the
question of the mechanical control of fault slip scaling and statistical laws, and to quantify
aseismic and fluid flow at depth from the analysis of seismicity. The remaining of the manuscript
is organized as follows: in the second chapter, I present the progress I have made about the
mechanical control on fault slip processes, scaling and statistical laws. The third chapter is
dedicated to my contributions to the use of seismicity to unravel slow slip processes and fluid
flow at depth. The last chapter is a description of my research projects which extend the use of
physics-based model to the interpretation of deep processes and laboratory experiments.
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Chapter 2

Mechanical control on earthquake
statistics and fault slip scaling laws

In this chapter I present an overview of my work about the physical control of the main em-
pirical statistical and scaling laws of seismology. The mechanisms driving the onset of swarms
and damaging earthquakes, the Gutenberg-Richter magnitude-frequency distribution, the Omori
decay of aftershocks, the moment-duration scaling of slow slip events, the moment-recurrence
scaling of repeating earthquakes, the emergence of precursory phenomena and the self-similarity
of growing earthquake ruptures are successively considered. The approach used is generally based
on parametric studies making use of different frictional fault models (illustrated in figure 1.12),
along with theoretical developments. Laboratory experiments and seismological data are used
to some extent as well, in the study of earthquake rupture growth.

2.1 Regimes of activity : characteristic system-size ruptures vs.
continuous activity

Different regimes of seismic activity are commonly observed: regular background seismicity,
micro-earthquake swarms, characteristic (or repeating) earthquakes, foreshock-main shock-aftershock
sequences, seismic quiescence. In many cases, the earthquakes are interpreted as the failure of
brittle asperities embedded in a single creeping fault zone, loaded by a constant remote tectonic
loading. In this framework, several fault models assuming a planar frictional interface embed-
ded in an elastic rock medium have been able to reproduce these different regimes (Burridge
& Knopoff, 1967; Rice, 1993; Lapusta et al. , 2000; Ziv, 2003; Ziv & Cochard, 2006). I have
contributed to this effort by analyzing the regimes of seismic activity generated by a popula-
tion of unstable rate-and-state asperities distributed on a planar creeping frictional interface
(Dublanchet, P. et al. , 2013a). The model used in this study is illustrated in figure 1.12b.
The main result from this study is presented in figure 2.1.

Under constant tectonic loading and quasi-dynamic stress transfers (Rice, 1993), this popu-
lation of asperities releases the tectonic stresses in two different modes. The first one (regime
I) consists of a continuous seismicity involving isolated ruptures of individual asperities. The
magnitude content is essentially controlled by the size distribution of the asperities (in this study,
all asperities had the same size, leading to one dominant magnitude). The second mode (regime
II) consists of the periodic occurrence of short clusters of strong activity. These swarms in-
volve ruptures of isolated and groups of asperities, and typically degenerate into a main shock,
or system-size rupture where the whole fault (asperities and aseismic barriers) slip at radiative
rates.

It could be shown that the transition between the two regimes of activity is controlled by
the density of asperities ρ defined as the ratio between the fault surface occupied by seismo-
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Figure 2.1: Regimes of seismic activity generated by a population of seismogenic asperities dis-
tributed on a creeping rate-and-state fault, from Dublanchet, P. et al. (2013a). Barriers
correspond to inter-asperity fault regions. Middle: transition from a regime of continuous ac-
tivity with isolated ruptures (regime I) to clustered activity with system-size ruptures (regime II)
as a function of asperity density and frictional properties of the barriers (as − bs rate-and-state
frictional parameter). Dots indicate numerical results, gray (solid and dashed) lines to theoretical
estimates assuming different values of the asperities stress drop. Theoretical estimates correspond
to a vanishing average value of the a − b rate-and-state parameter. Left and Right: schematic
diagrams of the frictional conditions leading to the different regimes of activity.

genic asperities and the total fault area. When ρ increases beyond a critical density ρc, the
seismic activity switches from regime I (continuous activity) to regime II (clusters and system-
size ruptures). This critical density of asperities depends on the frictional properties of the fault
interface: it is precisely the asperity density leading to an effective neutral frictional behavior
(the average a− b rate-and-state frictional parameter vanishes).

This study has allowed to define the concept of critical asperity density that is used in many
of the different studies I have been conducting in the following years. It is also what initiated my
interest for the study of effective frictional behavior (see section 4.3 of my research perspectives
for details).

2.2 Magnitude-frequency distribution : what controls b-value

Preliminary remark: in this section, b corresponds to the b-value of the Gutenberg-Richter law
defined in equation (1.1), and not the rate-and-state frictional parameter b of equation (1.3).

One of the most robust observation about earthquakes is the Gutenberg-Richter magnitude-
frequency distribution (Gutenberg & Richter, 1944), where magnitude distribution follows equa-
tion (1.1). If the k parameter of the Gutenberg-Richter law depends on the observation window,
the b value is generally of the order of 1, with slight variations in the range 0.5 − 2 (El-Isa &
Eaton, 2014). As mentioned in the introduction section, such variations are usually attributed
to differential stress acting on faults (Scholz, 1968; Amitrano, 2003; Schorlemmer et al. , 2005;
Goebel et al. , 2013; Scholz, 2015). Here again, many fault models and earthquake simulators
produce a power law distribution of magnitudes (or energy release) (Burridge & Knopoff, 1967;
Rice, 1993; Ziv & Cochard, 2006; Ide & Aochi, 2005) characterized by a b-value of the order of
one, but the physical origin of this distribution remains unclear. More importantly, the physical
mechanisms underlying the stress dependence of b-value are still not well understood.

In this framework, I have analyzed the b-value in synthetic seismicity produced by different
fault models in Dublanchet, P. et al. (2013a), Dublanchet, P. (2019a), Dublanchet, P.
(2020) and Almakari, M.et al. (2019) (as co-supervisor of Michelle Almakari’s PhD). Here I will
focus on the last two studies which discuss in more details the mechanical origin of b-value stress
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dependence. Both of them assume a planar and heterogeneous frictional interface between elastic
media. The frictional heterogeneity consists here of a superposition of overlapping patches with
sizes and critical slip dc following a power law distribution as illustrated in figures 1.12c’ and
1.12d. The scale dependence of dc was initially proposed by Ide & Aochi (2005) to account for the
scale dependence of fracture energy (Abercrombie & Rice, 2005). In the first case (Dublanchet,
P., 2020), a 2D fault was considered along with a constant remote tectonic loading (figure 1.12d).
In the second case (Almakari, M.et al. , 2019), a 1D fault is assumed (figure 1.12c’), and slip is
driven by both tectonic loading and the diffusion of pore pressure. In both cases, the simulations
were performed under different levels of effective normal stress: in the first case this was achieved
by changing the lithostatic stress σ, and by imposing a pore fluid pressure in the second case.
Because of frictional contact, this induces changes in both normal and shear stress on the fault.

velocity strengthening

velocity weakening patches

(a): Fault model

slip rate

slip rate

Figure 2.2: (a) Schematic diagram of the fault model used to analyze b-value dependence on
stress. arns and brns correspond to the a and b rate-and-state frictional parameters. White
circles correspond to a superposition of asperities with sizes (and thus critical slip dc) following
a power law distribution of exponent p. (b) Example of critical slip distribution on the fault used
in this study. (c) Example of magnitude-frequency distribution (black solid line) obtained with
the fault model of figures (a) and (b). p is the exponent of the power law distribution of asperity
sizes, σ and σ0 are the normal stress and a reference normal stress used in this study. The red
and green vertical lines indicate the magnitudes mmax and mmin corresponding to the rupture
of the largest and smallest asperity respectively. The dashed blue lines indicate the fits of the
distribution with a Gutenberg-Richter decay, considering all the events between mmin and mmax.
(c) and (d): Magnitude-frequency distributions dependence on p exponent and normal stress σ.
From Dublanchet, P. (2020).

The results from the first study are illustrated in figures 2.2 and 2.3. If the b-value is
influenced primarily by the asperity size distribution (as shown by the dependence of b-value on
the exponent p of figures 2.2d. and 2.3), a slight increase of the b-value with normal stress is
obtained as well. The maximum magnitude (called also main shock magnitude mf ) generated
during the simulations increases also with normal stress. In Dublanchet, P. (2020), these

26



Chapter 2. Mechanical control 2.2. Magnitude-frequency

variations are interpreted in terms of normal stress dependence of the nucleation length and the
stress drop. The nucleation length decreasing with increasing normal stress, the production of
small events is enhanced causing an apparent increase of b-value with stress. Smaller events
are indeed more frequent for two reasons. First because under smaller nucleation length smaller
patches are activated (they were smaller than critical), then because the largest patches tend to
produce more partial ruptures. It is shown in Dublanchet, P. (2020) that these two processes
could be captured by an analytical formula involving a logarithmic increase of b-value with
normal stress. The activation of previously stable patches leads to:

b = 1 +
4

9
log

σ

σ0
, (2.1)

while the creation of partial ruptures is characterized by:

b = 1 +
1

6
log

σ

σ0
, (2.2)

where σ0 is the minimum normal stress allowing all the predefined patches to be seismic. As
illustrated in figure 2.3a, the activation of new patches (equation 2.1) seems to dominate the
increase of b-value for σ < σ0. When σ > σ0, all the predefined patches are seismogenic, so that
the increase of b-value is dominated by the creation of partial ruptures (equation 2.2).

On the other hand, the stress drop of the largest events being higher under higher normal
stress, the maximum magnitudes mf increase. It is shown in Dublanchet, P. (2020) that this
mechanism leads to a logarithmic dependence of mf of the form:

mf ∼
2

3
log

σ

σ0
. (2.3)

The theoretical dependencies (2.1), (2.2) and (2.3) provide a good approximation of the numerical
results (figure 2.3), and thus capture the main features of how magnitude distribution is affected
by normal stress.

Neglecting the variations in friction coefficient during the seismic cycles, the normal stress
could be converted into a differential stress. The increase of b-value with normal stress would
then correspond to an increase with differential stress, which is in contradiction with previous
observations. This is what is shown in figure 2.3a, where gray dashed lines represent the typical
stress dependence of b-value derived from laboratory and seismological studies. However, the
friction coefficient, and thus the shear stress varies along the fault during the seismic cycles,
and this could be used to reconcile the results of figure 2.3 with previous observations. In this
framework of varying friction coefficient, the decrease of b-value with stress usually reported
might be a signature of varying shear stress, and not varying normal stress. It is also possible
that for the simulations reported in this study (that are not exhaustive), there was no change
in the ability of ruptures to propagate caused by the normal stress variations. This mechanism
might however play a role in nature. Finally, the results might be different when considering a
network of faults instead of the oversimplified planar fault model.

The second example of b-value variations with stress is presented in figure 2.4 from the study
by Almakari, M.et al. (2019). Here the fault is injected at the center with a fluid that diffuses
along strike (see section 3.3 of the next chapter for further details). The injection scenario consists
of increasing the pore pressure at the injection point linearly in time (with rate β, Phase I) until
a maximum pressure pmax is reached and held constant (phase II). b-values for the fluid induced
seismic activity during phase I and II are reported in figure 2.4, as a function of effective normal
stress and pressure rate. Phase I (pore pressure increase) is characterized by a short increase
followed by a decrease of b-value with injection rate (figure 2.4c.) while no clear dependence
on the effective normal stress is observed. Phase II on the other hand clearly shows a decrease
of b-value with effective normal stress (figure 2.4b.). The absence of b-value dependence with
injection rate during phase II arises because pressure is constant at the injection point.

27



Chapter 2. Mechanical control 2.2. Magnitude-frequency

0.5 1 1.5 2 2.5 3 3.5

0.4

0.6

0.8

1

1.2

1.4

0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

Figure 2.3: b-value (a) and main shock magnitude mf (b) versus normal stress σ for simulations
performed with the fault model of figure 2.2. Dots are numerical estimates, color coded as a func-
tion of the p exponent of the asperity size distribution used. In (a), gray dashed lines indicate the
empirical b-value stress dependence from Scholz (2015). Black dashed line is the approximation
of b-value increase with stress due to changes in nucleation length at low normal stress (equa-
tion 2.1). Black solid line is the same approximation at high normal stress, due to the increase
of partial ruptures (equation 2.2). In (b), the black dashed line indicates the theoretical scaling
(2.3) reflecting the increase in main shock stress drop with normal stress. From Dublanchet,
P. (2020).

In this case, the b-value has been computed considering all magnitudes larger than the
completeness magnitude, which is slightly different from what has been done to obtain figure
2.3a. The decrease of b-value with effective normal stress here corresponds to a slower decrease
than what is reported in the observations (Scholz, 2015). This could be due to multiple factors,
in particular related to the quasi-dynamic interactions which may overestimate the stress re-
distributions associated with earthquakes (Almakari, M.et al. , 2019). However, the analysis of
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Figure 2.4: b-value for injection induced seismicity obtained in the numerical simulations of
Almakari, M.et al. (2019). Model c’ of figure 1.12 is used here, which is a 1D equivalent of
the fault depicted in figure 2.2a. and b. The system is permeated with a fluid injected at the
fault center. The injection scenario consists of a linear increase of pore pressure at the injection
point with pressure rate β (phase I) followed by a period of constant pressure pmax at the injection
point. The b-value is here estimated from the whole magnitudes above mmin. (a) and (b): b-value
and effective normal stress. (c) and (d) b-value and injection rate.

b-value was not the main focus of this study (as this will be detailed in section 3.3), so that
no further investigation was done concerning the origin of b-value variations with stress in the
presence of fluids. This issue is nonetheless of fundamental interest since many cases of b-value
variations have been reported in fluid induced seismicity sequences (Goebel et al. , 2016a,b;
Kozłowska et al. , 2018). The dependence of b-values on pressure rate (figure 2.4c.) is also an
interesting feature, suggesting a dependence on stressing rate, which may share some similarities
with b-value variations with creep rate observed along San-Andreas Fault (Vorobieva et al. ,
2016). This issue also requires more investigation.
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2.3 Omori decay of repeating earthquakes

The other well documented empirical law of statistical seismology, the Omori decay of aftershock
sequences, equation (1.2) (Omori, 1894; Utsu et al. , 1995), has been discussed in three of my
publications (Dublanchet, P. et al. , 2013a; Dublanchet, P., 2019a, 2020), and it is the main
focus of one additional study (Dublanchet, P. et al. , 2013b). Here again, these studies aim at
decoding the physics underlying the decay of aftershock rate as the inverse of time to the main
shock. It is also assumed, as in the previous paragraphs that seismicity is caused by the failure
of brittle asperities embedded in a single creeping fault. In these particular studies, asperities
do not overlap, and their size is either constant (Dublanchet, P. et al. , 2013a,b), or follow a
power law distribution (Dublanchet, P., 2019a, 2020) (fault models a, b and c in figure 1.12).

The first result I have obtained concerning the Omori decay is discussed in Dublanchet,
P. et al. (2013a): it shows that stress transfers between asperities lead to an apparent Omori
decay, when stacking the aftershock sequences of all the events, in the case of sub-critical asperity
density (as defined in section 2.1). It is also shown that the decay exponent is to some extent
influenced by the density of asperities. Interestingly, super-critical asperity densities lead to
system size ruptures unable to produce aftershocks. The main shock here does release all the
stress on the fault in a somewhat artificial manner because the rupture is stopped by the fault
boundaries. This feature is probably not physical as discussed inDublanchet, P. et al. (2013a).

Obtaining aftershocks in this case would require to consider subsidiary smaller faults in the
medium surrounding the main rupture. This situation is approximately achieved on a planar
fault when considering a population of asperities of different sizes (models c and d in figure 1.12).
In my two studies using such asperity distributions (Dublanchet, P., 2019a, 2020), aftershock
sequences were indeed obtained. However, the Omori decay was not the main purpose of these
publications, but the synthetic catalogs produced could be reanalyzed in order to determine the
temporal dynamics of these sequences.

A deeper analysis of the mechanical control on Omori decay is proposed in Dublanchet,
P. et al. (2013b). This study focuses on the problem of Omori decay of repeating earthquakes
during postseismic phases of large earthquakes. As in the case of global seismic activity, the
rate of ruptures occurring on a repeating earthquake after the occurrence of a main shock is
known to decay as the inverse time from the main event (Schaff et al. , 1998; Lengliné & Marsan,
2009). This feature is usually interpreted assuming a single asperity embedded in a creeping fault
segment where slip rate decays as the inverse of time because of postseismic slip. InDublanchet,
P. et al. (2013b), such an asperity embedded in a creeping segment is modeled (model a. in
figure 1.12), and the response to coseismic Coulomb stress changes is analyzed. The cumulative
slip on the asperity and the rate of events following the stress step are shown in figures 2.5a.
and b. The response is analyzed as a function of the asperity density ρ, here defined as the
fraction of the fault surface occupied by the seismogenic asperity. In response to a coseismic
stress step, a logarithmic increase of slip is obtained, with a characteristic time depending on
the asperity density. This behavior is however observed only for sub-critical asperity densities
(that is smaller than the critical asperity density defined in section 2.1), which corresponds here
to a rather small asperity embedded in a much larger creeping region. In other words, the fault
segment needs to obey an effective velocity strengthening behavior (positive spatial average of
the a− b rate-and-state parameter) in order to produce ruptures following an Omori decay.

It is shown in Dublanchet, P. et al. (2013b) that the characteristic time for Omori re-
laxation is controlled by the spatial average of the rate-and-state a − b parameter. Analytical
approximations are developed that fit the numerical results (solid colored lines in figures 2.5c.
and d.). It results that the appropriate relaxation time tr is a function of the spatial average
noted a0 − b0 of the a− b rate-and-state parameter on the fault. We have:

tr =
(a0 − b0)σR

µvb
, (2.4)
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Figure 2.5: Cumulative slip (δ, figures a. and c.) and rupture recurrence rate (r, figures b.
and d.) on an asperity forced by aseismic creep (see figure 1.12a.) and loaded by a positive
coseismic Coulomb stress change at t = 0. (a): Numerical results obtained for different asperity
densities ρ (colored lines), along with the tectonic loading rate (vp, gray dashed lines). In figures
(b), (c) and (d), dots, and dashed lines indicate the numerical results, colored solid lines are
analytical estimates. Time t from the coseismic stress perturbation is normalized by tr0 and tr,
corresponding to timescales defined from the velocity strengthening and average a − b rate-and-
state parameters respectively. Slip δ is normalized by either dc (critical slip for rate-and-state
friction), or vptr. Rupture rate is normalized by the background rate r0 (rate of ruptures before
the coseismic stress perturbation). From Dublanchet, P. et al. (2013b).

where σ is the normal stress, R the size of the asperity generating the repeating earthquake,
µ the shear modulus, and vb the loading slip rate (see figure 1.12). Recall that since the fault
segment is characterized by effective velocity-strengthening behavior, a0 − b0 is positive.

2.4 Moment, duration, recurrence scaling : from slow slip events
to earthquakes

An important observation about fault slip phenomena in general (earthquakes, slow slip events,
tremors, low frequency earthquakes) is the way the moment M0 scales with the duration T ,
or even with the recurrence time Tr of the events (in the case of repeating earthquakes). As
mentioned in the introduction section, the scaling for the whole range of fault slip events is of
the form (Ide et al. , 2007b; Peng & Gomberg, 2010):

M0 ∼ T p, (2.5)

where p = 3 for regular earthquakes, and p = 1 for slow slip events. Repeating earthquakes are
also characterized by (Nadeau & Johnson, 1998; Chen et al. , 2007):
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M0 ∼ T 1/6
r . (2.6)

The mechanical interpretation of these scalings has received lots of attention since they have
been established from seismological observations. The increase of seismic moment as the cube
of the duration for regular earthquakes is possibly the signature of constant stress drop and
rupture speed (Abercrombie, 1995; Ide & Beroza, 2001; Allmann & Shearer, 2009). In all the
simulations performed on a heterogeneous rate-and-state frictional fault, the constant stress drop
assumption, and the moment-duration scaling is generally reproduced, as long as the effective
normal stress does not change too much (see Dublanchet, P. (2019a,c) for illustrations).

The mechanical origin of the moment-duration scaling for slow slip events is more debated. I
have contributed to this discussion in a study in collaboration with R.C. Viesca (Tufts University,
Boston) (Viesca & Dublanchet, P., 2019). In this study, we consider a 1D linear viscous fault
between 2D elastic half spaces (model a’ in figure 1.12, but with linear viscous rheology instead
of rate-and-state friction). We show (both theoretically and through numerical simulations) how
a stress perturbation triggers a slip rate transient that decays as the inverse of time and expands
along strike, in such a way that the seismic moment rate is constant. In this framework, a slow
slip event would be triggered by an instantaneous stress perturbation (coseismic redistribution,
pore pressure change), and would stop once the slip front reaches the fault boundaries. The ac-
cumulated moment is then proportional to duration. This model therefore provides a mechanical
basis for the M0 ∼ T observations for slow earthquakes.

Further numerical investigations with this model have shown that under rate-and-state fric-
tion, the slip transient properties are similar (constant moment rate, slip rate decay as the inverse
time to stress perturbation). This work is however not yet published.

As mentioned in the introduction, the linear moment-duration scaling for slow earthquakes
is still a matter of debate since recent observations report a scaling of the form M0 ∼ T 3 similar
to regular earthquakes (Gomberg et al. , 2016; Michel et al. , 2019). Rate-and-state fault models
seem also to reproduce this T 3 scaling for slow slip events (Dal Zilio et al. , 2020). So far, I
have not analyzed what could be the moment-duration scaling in slow slip events generated with
asperity models of figure 1.12, but this could be the purpose of future investigations.

Concerning the relationship between moment and recurrence time of repeating earthquakes
(equation (2.6)), many mechanical models reproduce the observed scaling. As shown in section
2.3, repeating earthquakes could be interpreted as the failure of a particular seismogenic asperity
forced by fault creep (model a in figure 1.12). In this framework, the moment-recurrence scaling
is recovered either in the case of moment dependent stress drop (Sammis & Rice, 2001), partial
creep on the asperity (Chen & Lapusta, 2009), or partial ruptures during interseismic periods
(Cattania & Segall, 2019). However, all these models do not account for the slight deviation
from the scaling (2.6) observed for interacting repeating earthquake sequences (Chen et al. ,
2013). Interacting repeating earthquakes consist of a set of asperities distributed on the same
fault region as depicted in figures 1.12b, c and d. Asperities are indeed usually not isolated on
creeping faults, which results in stress redistributions and advances or delays in the ruptures. In
Dublanchet, P. (2019c), I analyzed the dynamics of repeating earthquake sequences generated
by a population of seismogenic asperities distributed on a creeping fault. The asperity sizes were
here power-law distributed in order to generate different moments (model c in figure 1.12).

As illustrated in figure 2.6, even within a population of interacting asperities, the scaling (2.6)
still arises on average, as long as the asperity density ρ is lower than critical. For higher densities
(here higher than the critical density of asperity defined in section 2.1), the recurrence times Tr
do not depend on the moment anymore. This is in fact a consequence of the highly clustered
activity described in section 2.1, where the main shock almost synchronizes all the activity. In
the low asperity density regime, a slight deviation from this scaling is nevertheless obtained,
that increases with the asperity density until the critical density is reached (figure 2.7). It is
shown in Dublanchet, P. (2019c) (and partially in figure 2.7), that the increase of variability
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Figure 2.6: (a) and (b): Recurrence time Tr vs. seismic moment M0 for synthetic repeating
earthquake sequences generated in a fault model consisting of a population of VW asperities
distributed on a creeping fault (model c in figure 1.12). Quantities are normalized using the
shear modulus µ, the rate-and-state b0 parameter, the critical slip dc, the remote loading rate v∗

(vb in figure 1.12), the average creep rate on the fault vc. Colored dots are numerical estimates
obtained under different asperity densities. Dashed black and gray lines indicate the characteristic
scalings observed for earthquakes (equation (2.6)). When Tr is normalized by the creep rate vc, all
data for sub-critical asperity densities (ρ < 0.55 here) collapse on the same M0 ∼ T 1/6

r tendency,
showing the creep control on recurrence rate. (c) and (d): statistical estimates of the exponent p
of the moment-recurrence scaling in numerical data. From Dublanchet, P. (2019c).

in recurrence time within individual repeating earthquake sequences is more a consequence of
creep mediated stress transfers than static stress redistribution between the different asperities.

This last study provides new insights into the role of asperity density in the control of the
moment-recurrence scaling, and the variability of repeating earthquakes recurrence.

2.5 Precursors to main shocks

Many evidences suggest that the initiation of large earthquakes (nucleation) is characterized
by accelerating aseismic fault slip in the hypocentral region of the main shock (Dodge et al. ,
1996; Kato et al. , 2012), associated from time to time with accelerating foreshock sequences
(Bouchon et al. , 2013). Laboratory experiments and numerical models suggest that if tectonic
faults are assumed to behave as frictional interfaces, slow slip precedes the onset of the largest
ruptures (Ohnaka, 1992; Dieterich, 1992; Rubin & Ampuero, 2005). However, the mechanical
conditions allowing both slow slip acceleration and foreshock are still unclear. I investigated this
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Figure 2.7: (a. to g.) Covariance distribution for the recurrence time Tr of repeating earthquakes
sequences presented in figure 2.6. The covariance COV determines the scatter of recurrence
times to the mean in a particular sequence (COV = 0 corresponds to perfect periodicity). From a
dimensional argument, recurrence rate is expected to scale as the inverse of stressing rate acting
on the asperities. Two estimates of the covariance of inverse stressing rates are also shown for
comparison: τ̇s is the stressing rate due to static stress transfers within the asperity population,
τ̇c is an estimate of the creep mediated stress transfers. Covariance in Tr is closer to covariance
in creep mediated inverse stressing rates than static stressing rates, indicating a creep control in
the variability of recurrence times. (g) Cumulative probability distribution of the covariances in
Tr for different asperity densities ρ. From Dublanchet, P. (2019c).

question in Dublanchet, P. (2018) from a numerical and theoretical perspective. Following
a suggestion initially proposed by Ohnaka (1992), I studied the role of frictional heterogeneity
on earthquake nucleation along a 1D fault, as depicted in figure 1.12b’. Such a fault generates
main shock events, corresponding to the system size ruptures described in section 2.1 for high
asperity densities. In this particular study, I analyzed the nucleation process of these events
under different frictional conditions. The results are shown in figures 2.8 and 2.9.

Depending on the characteristic length-scale (wavelength) of frictional heterogeneity λ (see
figure 1.12b’), and on the ratio of average a and b rate-and-state frictional parameters (noted
a0 and b0), 4 different regimes of nucleation could be defined. All of them imply a slow slip
acceleration process, either localized when he ratio a0/b0 is small, or taking the form of an
expanding crack when a0/b0 is close to one. Recall that main shocks occur only when a0/b0 <
1. Only one regime leads to simultaneous slow slip acceleration and an accelerating foreshock
sequence (regime IV). Foreshocks occur if first the wavelength of frictional heterogeneity λ is
larger than a critical value λc, defined by local frictional properties. λc is the critical nucleation
length defined by Rubin & Ampuero (2005). The second condition derives from linear elastic
fracture mechanics theory (LEFM (Lawn, 1993)), and could be summarized as follows: in order to
get foreshocks, the first foreshock should not destabilize the whole fault (it should not degenerate
into a dynamic rupture). From LEFM, this condition could be regarded as the stress intensity
factor K associated with the first foreshock rupture should not exceed a critical stress intensity
factor Kc characterizing the velocity strengthening barriers. This imposes that λ should be
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Figure 2.8: main shock nucleation regimes observed in the fault model of figure 1.12b’. Colored
contours correspond to slip rate, and time to failure indicates the time remaining from the main
shock rupture onset. Slip rate is here normalized with the loading rate v∗ (vb in figure 1.12).
Black dots are foreshocks location. a0 and b0 are the average values of a and b rate-and-state
parameters (see figure 1.12b’). λc is the critical wavelength described in the maintext. VW denotes
velocity weakening. qs and qdr correspond to quasi-static and quasi-dynamic (main shock) rupture
respectively. From Dublanchet, P. (2018).

smaller than another critical value. The two conditions for foreshock occurrence are schematically
represented in figure 2.9 summarizing the different nucleation regimes.

Another interesting result of this study is the acceleration of foreshock activity preceding the
main events under regime IV. Acceleration of foreshock activity has been evidenced in natural
seismicity for a long time (Jones & Molnar, 1976; Bouchon et al. , 2011, 2013), in the form of an
inverse Omori law.

The cumulative number of foreshocks for different fault scenarios under regime IV is reported
in figure 2.10. It is shown in Dublanchet, P. (2018) that the total number of foreshocks is
expected to grow as ln2 (1− t/tf ), 1− t/tf being the time to failure (i.e. onset of the main shock
rupture), which is in rough agreement with the numerical results shown in figure 2.10. This leads
to a foreshock rate Rf blowing up as

Rf ∼ −
ln(1− t/tf )

(1− t/tf )
, (2.7)

which is close to an inverse power law of time to failure (inverse Omori law), if logarithmic
changes are neglected to the first order.

Note that the increase of foreshock rate as an inverse Omori law could be related to the
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slow slip rate acceleration as inverse time to failure during these sequences, as discussed in
Dublanchet, P. (2018). As shown before in the context of repeating earthquake sequences
(section 2.4), the recurrence time of earthquake ruptures scales as the inverse slip rate in such
asperity models. I suggest that this might be also the case during foreshock sequences.

This study has provided new theoretical arguments supporting the fact that major earth-
quakes are not necessarily preceded by foreshocks, and provides new insights on how foreshocks
and pre-slip interact. Furthermore, it has shown how realistic foreshock sequences, character-
ized by an Omori like acceleration, could be seen as a consequence of frictional (and thus fault
material) heterogeneity.

2.6 Rupture speed : the growth of seismic ruptures

The moment-duration scaling raises the question of self-similarity of slip events, and in particular
the physical control on the rupture speed and the stress drop during earthquakes. The mechanical
control on rupture speed is also of importance in understanding slow slip events, since they are
characterized by slower rupture speeds than regular earthquakes.

I have contributed to two studies about earthquake rupture speed and rupture growth as a co-
author. The first one is experimental (Passelègue et al. , 2020) and investigates the relationship
between rupture speed and prestress conditions during laboratory earthquakes on saw-cut sam-
ples loaded by a combination of axial stress and fluid injection. The second study (Renou et al.
, 2019) consists of a statistical analysis of source-time functions aiming at constraining the rate
of moment growth during the initiation of rupture propagation for events between magnitudes 6
and 7.

The outcome of the first study is illustrated in figure 2.11. The rupture speed of the laboratory
events is here controlled by the prestress conditions in agreement with linear elastic fracture
mechanics predictions (Lawn, 1993): it decreases with the ratio between effective normal stress
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Figure 2.10: Cumulative number of earthquakes vs. time to failure (onset of main shock rupture)
in the heterogeneous rate-and-state fault model of figure 1.12b’. nf and nmaxf are the number of
foreshocks and the maximum number of foreshocks in the sequence. t, tf and t1 are time, onset
time of the main shock and an arbitrary starting time respectively. Different symbols and colors
refer to different scenarios of frictional heterogeneity. The parameter f controls the amplitude
of the b rate-and-state parameter variation along the fault. α is the ratio of average a0 and b0
rate-and-state parameters. From Dublanchet, P. (2018).

σ−P (difference between imposed normal stress and average pore fluid pressure) and the square of
the dynamic shear stress drop ∆τd. This result provides a first explanation about the distribution
of regular earthquakes versus slow slip events in subduction zones: slow slip events indeed tend
to cluster at depths where the seismic velocity ratio (S wave speed over P wave speed) is the
smallest, which may indicate high fluid pressure and thus reduced effective normal stress. It
also shows that depending on the stress conditions, the same fault could develop either regular
earthquakes or slow events.

In the second study by Renou et al. (2019), it is shown that moment rate may increase faster
than what is expected from a self-similar rupture growth. The mechanical interpretation of this
observation could be either a slightly increasing rupture speed, and (or) a varying dynamic shear
stress drop during such events. The comparison with laboratory experiments (Passelègue et al.
, 2020) shows that both are linked to some extent.

Up to now, I have not analyzed in detail the rupture growth and the rupture speed of synthetic
earthquakes generated in the frictional fault models I have developed (in particular models b, c
and d in figure 1.12). One of the reason is that the quasi-dynamic approximation would certainly
bias the rupture speed, and it would be more relevant to use fully dynamic models to conduct
such analysis, and compare the results to both experiments and seismological observations.

However, the rupture speed of slow slip events has been analyzed in two other studies con-
ducted on frictionally stable faults (Viesca & Dublanchet, P., 2019; Dublanchet, P., 2019b).
The first one (discussed in section 2.4) shows that under linear viscous contact rheology, stress
variations lead to slip rate perturbations ∆v propagating in a self-similar manner of the form:

∆v ∼ t−ξg(x/t), (2.8)
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Figure 2.11: Rupture speed Vr vs. stress ratio (σn − Pf )/∆τ2d observed during laboratory earth-
quakes triggered by fluid injections in an andesitic saw-cut rock sample. σn is the remote imposed
normal stress, Pf is the mean pore fluid pressure on the fault, and ∆τd the dynamic stress drop.
Dots are experimental results. Dashed lines are theoretical approximations involving a static fs
and a dynamic fd friction coefficient. From Passelègue et al. (2020).

t being time, x the along strike distance, ξ an exponent that could be 1 or 2, and g a shape
function of the similarity variable x/t. The second one (Dublanchet, P., 2019b), considers a
punctual injection in the same fault systems. It is shown that the fluid injection triggers an
expanding slow slip event, where slip front propagates at a constant rupture speed controlled by
the injection rate, the frictional properties, and the prestress conditions on the fault. This latter
study will be detailed in section 3.4 of the next chapter.

2.7 Conclusion

The studies discussed in this chapter show that fault models coupling elasticity and rate-and-
state friction on a planar interface reproduce many observations about fault slip phenomena,
and probably more than what was shown by the first generations of models. The use of such
models therefore allows to improve our understanding of what mechanical parameters control
the scaling and statistical laws characterizing tectonic fault slip phenomena. As shown in this
chapter, this concern has motivated nine of my publications over the past seven years, and several
collaborations with R.C. Viesca (Tufts University), F.X. Passelegue (EPFL), J. Renou and M.
Vallée (IPGP). The main outcome of all these results is the importance of asperity density and
more generally frictional heterogenity in controlling fault slip phenomena. The question of how
frictional heterogneity controls fault slip needs to be further investigated, in the framework of
an effective theory for instance. This is the purpose of one of my research projects, as discussed
in the last chapter (section 4.3). Recent advances have shown that the geometrical complexity
is also a crucial aspect of fault slip dynamics that needs to be accounted for (Romanet et al. ,
2018). Future developments will also have to account for this issue.
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Chapter 3

Inferring slow slip and fluid flow at
depth from seismicity

The main crustal processes underlying micro to moderate earthquake swarms are slow aseismic
slip episodes, or transient deep fluid flow. The role of aseismic slip has been demonstrated in
many places, since geodetic or in situ deformation measurements have been coupled to seismolog-
ical observations. The growing interest for induced seismicity over the past years, has contributed
to highlight the importance of fluid flow at depth in triggering seismicity. Recent analysis of nat-
ural sequences has also revealed the signature of fluids. However, if seismic swarms are easily
detected, located and monitored, deep aseismic slip and fluid flows are more difficult to observe
and to quantify. Earthquake swarm patterns provide only indirect information about these pro-
cesses. In this framework, physics-based fault models and earthquake simulators (illustrated
in figure 1.12) could be used to quantify aseismic slip and fluid flows. This could be achieved
either through direct modeling of particular earthquake sequences, or by looking for general rela-
tionships between aseismic slip properties (extent, amount of deformation, stress changes), fluid
flow properties (overpressure, volumes) and earthquake features (magnitude content, temporal
clustering, migration). This is the main purpose of this chapter. The fist section presents two
attempts to model specific earthquake swarms in the Corinth Rift in Greece. The second section
is dedicated to the question of estimating total fault slip (i.e. seismic and aseismic) from the
analysis of seismic moment released by earthquakes. The last sections present parametric and
theoretical studies dedicated to the relationship between fluid flow and seismicity (third section),
and between fluid flow and aseismic slip (fourth section).

3.1 Modeling seismic swarms in the Corinth rift

The Corinth rift (Greece) is a tectonically active region of intense seismic activity (more than
30,000 earthquakes of magnitude larger than 1.5 since 2001), illuminating the shallow crust
by episodic swarms (Lambotte et al. , 2014; Duverger et al. , 2018). Earthquake swarms are
suspected to be driven by a combination of extensional tectonics, fluid flow at depth and aseismic
fault slip (Bernard et al. , 2006; Bourouis & Cornet, 2009; Lambotte et al. , 2014; Duverger et al.
, 2018). However, the forcing mechanism of individual sequences is still in many cases unclear.

The mechanics underlying swarms development could eventually be inferred in more details,
by comparing seismological data and results of mechanical modeling. In collaboration with
seismologists from Géoazur (M. Godano and L. De Barros), we developed this approach for two
particular swarms of the Corinth rift.

The study of the first swarm is presented in two companion papers : Godano et al. (2015)
and Dublanchet, P. et al. (2015). The purpose of the first study (Godano et al. , 2015) was
a Bayesian estimation of all the source parameters (moment, stress drop, source size, and fault
slip) of the 52 events participating in this microseismic cluster located at 8 km depth under the

39



Chapter 3. Inferring slow slip and fluids 3.1. Corinth swarms

northern end of the Corinth rift, from spectral ratio analysis. This cluster was identified as a
multiplet (Lambotte et al. , 2014), implying a common source mechanism and compact location of
all the events. This multiplet activated between 2001 and 2007 a slightly north dipping interface.
The estimated parameters account for the uncertainty in source location, moment and corner
frequency. Earthquake locations, temporal evolution of the swarm, and estimated accumulated
fault slip are presented in figure 3.1.

This irregular sequence, composed of 52 events with magnitudes between 1.1 and 2.8 produced
the coseismic slip pattern shown in figure 3.1d. Up to 10 cm of slip was accumulated on this
fault patch during the seven years of cluster existence. An important issue raised by this result
is whether this coseismic slip was a byproduct of larger scale aseismic slip, or if on the contrary,
this slip occurred in a locked fault section, increasing the stress in the vicinity of the cluster, and
thus the seismic hazard.
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Figure 3.1: (a) Location of the multiplet 866 (black dots) in the western Corinth rift. Other
microseismic multiplets of the area are shown as gray dots. A composite focal mechanism is shown
for each multiplet. The surface projection of the rupture area of the 1995 Mw = 6.1 earthquake
is also shown. (b) Magnitudes and cumulative seismic moment released by the multiplet 866. (c)
Possible conceptual model for the multiplet 866. (d) Cumulative slip pattern for multiplet 866,
estimated from the Bayesian inversion of all the source parameters of the 52 events shown in (b).
From Godano et al. (2015).

In order to answer this question, we developed a model of the cluster’s fault segment illus-
trated in figures 3.1c and 3.2a. Here again the fault is modeled as a rate-and-state frictional
interface within an elastic medium, where a cluster of velocity weakening asperities (seismogenic
patch in figure 3.2) is forced by remote loading (corresponding to the extensional loading in the
rift, derived from geodetic measurements). We considered two different scenarios: in the first
one, the cluster of asperities was embedded in a creeping fault zone (creep model), modeled using
velocity strengthening properties, in the second one, the seismogenic patch was located at the
transition between a creeping fault zone and a locked section (semi-locked model).

As shown in figure 3.2, the creep model involving 1.5 cm.yr−1 of aseismic slip provides a
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Figure 3.2: (a) Schematic representation of the best model for the multiplet 866. (b) Magnitude
content, slip pattern shape and successive time delays distribution in the observations and in
two different models of the multiplet 866 (creep and semi-locked). The slip pattern shape is here
characterized by the ratio between total slip at the center of the patch and slip on its periphery.
See Dublanchet, P. et al. (2015) for details.

better fit to the magnitude content and the distribution of time delays between events than
the semi-locked model. The result of this modeling attempt suggests that the cluster’s fault is
slipping aseismically, and does not accumulate stress in the vicinity of the seismogenic cluster.

This first result is encouraging and shows how fault models could be used to infer fault
conditions at depth. In the case of Corinth seismicity, this approach could be generalized to
other clusters. This is one of the perspectives that will be developed in chapter 4.

Another interesting sequence of the Corinth rift has recently been analyzed by De Barros
et al. (2020). This sequence activated for 10 days in October 2015 a 2 km long south dipping
fault under the northern edge of the Corinth rift, with an interesting migration pattern illustrated
in figure 3.3. As the microseismic swarm was expanding at a speed of approximately 125 m per
day, at least three episodes of rapid migration (at about 10 km per day) are possibly occurring
within the seismic cloud. This is interpreted by De Barros et al. (2020) as a reactivation process
involving both aseismic slip front propagation and possible pore pressure migration, such as what
is observed in induced seismicity contexts.

This swarm is the second sequence for which we proposed a mechanical model. This work
has been recently accepted for publication (Dublanchet, P. & De Barros, 2020). The model
has been designed following the interpretation of De Barros et al. (2020) involving the coupling
between earthquakes, aseismic slip and fluid flow along a fault segment. Here again, we modeled
the fault as a 1D linear interface between elastic slabs. In order to allow both aseismic slip
and earthquake ruptures, we used a heterogeneous friction with velocity weakening and velocity
strengthening patches (as depicted in model b’ of figure 1.12). We then modeled the fluid flow
along the fault assuming an injection at constant rate at the center of the fault, and a diffusion
along strike. We tested different hydraulic properties leading to linear and non-linear (i.e. slip
dependent) diffusivity. From simple micro-mechanical arguments, we developed a model for the
diffusivity D of the form:

D = D0e
−θ/τv , (3.1)

where D0 is a reference diffusivity, θ the state variable of the rate-and-state friction law, and τv
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b c

julian day julian day

Figure 3.3: October 2015 Corinth rift sequence. (a) Epicenter locations. (b) Migration pattern for
the whole swarm. The in-plane distance is computed from the activated fault center. (c) Zoom
on a particular rapid migration event. Dots are observed events, color coded with magnitude.
Red solid line is a fit assuming constant expansion speed. Dotted red line is a fit assuming pore
pressure diffusion from the fault center at a constant diffusivity. Black arrows indicate possible
rapid migration episodes. From De Barros et al. (2020).

a characteristic visco-elastic timescale. This diffusivity law leads to a strong slip-rate dependence
of the fluid flow.

An example of fault slip response is shown in figure 3.4. In this example, the fluid injection
leads to a pore pressure perturbation migrating along strike (figure 3.4a.) which triggers a
slow slip front (figures 3.4b., c. and d.). The earthquakes are here triggered by the slow slip
propagating from one velocity weakening patch (asperity) to another (figures 3.4b. c. and
d.). The resulting seismic pattern consists of a global expansion at approximately 20 m.day−1,
involving several episodes of rapid (∼ 300 m.day−1) migrations. This pattern is very similar to
the observations (figure 3.3), which confirms the role of imbricated fluid flow and aseismic slip
in the reactivation of this fault.
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Figure 3.4: Earthquake locations (black symbols), pore pressure, slip rate and cumulative slip
evolutions following an injection in the fault model of figure 1.12b’. The hydraulic diffusivity is a
non-linear function of the state variable θ of the form (3.1) involving the reference diffusivity D0

and the characteristic visco-elastic time τv. The pressurization Πm is the rate of increase of the
average pore pressure in the fault. Purple dashed lines indicate earthquake migration. The red
box in figure a. delineates the zoomed region in b. and d. From Dublanchet, P. & De Barros
(2020).

In this study, we also analyzed what mechanical parameters control the two different migra-
tion speeds observed in the seismic pattern (global swarm expansion and rapid migration). The
dependence of the earthquake migration speeds on different mechanical parameters is illustrated
in figure 3.5. The main result shown here is that the migration of earthquakes is controlled to
the first order by two parameters. The first one is the pressurization Πm, which is the rate
of increase of the mean pore pressure within the fault. The second one is what we define as
the aseismic fracture energy density Γ, which reflects the strength of the velocity strengthening
barriers. More precisely, we show from the theoretical results of Dublanchet, P. (2019b) that
the migration speed scales as:

Vm =
f0LΠm

2Γ
, (3.2)

where f0 is the reference friction coefficient and L the fault length. The approximation (3.2)
provides a first order estimate of our numerical results (figure 3.5). Interestingly, the fault
diffusivity plays a minor role, since most of the earthquakes are triggered by the slow slip front,
and not the pressure front itself. In this context, the difference in global expansion and rapid
migration speeds correspond to differences in the Γ parameter. As discussed in Dublanchet, P.
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& De Barros (2020) the global expansion results in an increase of Γ behind the slow slip front,
which accelerates the migration of earthquakes within the swarm.
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Figure 3.5: Earthquake migration speeds in the injected fault model of figure 1.12b’. The results
include the migrations observed in figure 3.4. Colored dots are numerical results. The black line
separates global swarm expansion and fast migration events. Red dashed lines is the approximation
(3.2) for two different values of the strengthening fracture energy density Γ. Magenta horizontal
lines indicate the migration speeds observed in the Corinth swarm (figure 3.4). S0 is the initial
understress on the fault. From Dublanchet, P. & De Barros (2020).

Moreover, the range of parameters considered allows to reproduce the range of migration
speeds observed for the Corinth swarm. It is shown in Dublanchet, P. & De Barros (2020)
that the range of Πm needed to recover the observations leads approximately to a 17 MPa of
overpressure in the fault at the end of the swarm.

With these two examples of microseismic swarm modeling, we have shown that it is possible
to recover information about deep processes from the analysis of earthquake swarms dynamics. In
the first case the model indicated a deep creep at 1.5 cm.yr−1, in the second case an overpressure
of the order of 17 MPa. Such information about deep creep and fluid flow could not have been
obtained from direct geophysical measurements.

3.2 Fault slip from cumulative seismic moment

Beyond the modeling of a particular microseismic sequence, the question of inferring fault slip
rate at depth from the analysis of microseismicity in a general case is of fundamental importance
in estimating where tectonic stresses accumulate in the crust. In many situations, the slip
budget on deep faults is estimated from the inversion of geodetic measurements (Nishimura
et al. , 2004), but the analysis of repeating earthquakes generally increases the resolution of the
geodetic estimates (Nadeau & McEvilly, 1999; Uchida et al. , 2003; Gardonio et al. , 2018). Using
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repeating events is to some extent supported by observations and models (Chen et al. , 2007;
Dublanchet, P., 2019c) showing that the recurrence time of individual sequences scales (to the
first order) as the inverse creep rate on the fault (see figure 2.6 for instance). However, the use
of repeating events as creep meters on a fault relies on very strong mechanical assumptions, in
particular that no interaction occurs, and that slip accumulated on earthquake sources is the
same as the slip accumulated in its vicinity. Furthermore, this primarily requires to identify
repeating earthquakes in the seismic data.

In Dublanchet, P. (2019a), I propose a different approach to estimate fault slip rate from
earthquake data, that does not rely on repeating earthquake sequences. This study consists of
analyzing the relationship between total fault slip and seismic slip, that is the slip derived from
the cumulative seismic moment released by a population of seismogenic (velocity weakening)
asperities distributed on a creeping (velocity strengthening fault) fault. Here, the fault model
used is illustrated in figure 1.12c (as in section 2.4).

Figure 3.6: Seismic component of total fault slip δs/δ0 as a function of apparent asperity density
ρa in the fault model illustrated in figure 1.12c. δs is estimated from the cumulative seismic
moment released by the earthquakes, and δ0 is the total slip accumulated on the fault during
the simulation. Gray dots are numerical estimates. Red lines are the theoretical predictions of
equation (3.3). R1 and R̄ are the minimum and mean asperity size respectively. Lc is the critical
nucleation length. From Dublanchet, P. (2019a).

This relationship is shown in figure 3.6: globally, the ratio between seismic slip (estimated
from cumulative coseismic moment) and total slip linearly increases with the apparent asperity
density ρa. ρa is an estimate of the true asperity density, based on the analysis of earthquake
locations and source size. It is shown in Dublanchet, P. (2019a) that the apparent asperity
density converges to the real asperity density if enough events are considered (typically, one
needs to wait several cycles of the main event). In Dublanchet, P. (2019a), an approximate
expression for the ratio δs/δ0 is derived from simple mechanical arguments leading to:

δs
δ0

= ρa(1− 2
Lc
R

), (3.3)

where Lc is the critical nucleation length of the seismogenic asperities, and R could be seen as
the minimum or mean asperity size on the fault. Expression (3.3) provides a good approximation
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of the numerical results 3.6.
As far as the apparent asperity density could be estimated, and a sufficient number of events

are recorded, the results shown in figure 3.6 support the possibility of deriving total slip from
the cumulative seismic moment released by microseismicity, without having to look for repeating
earthquakes.

This result is of course only valid in the case of seismic activity restricted to a single fault. I
expect therefore that it could be useful on mature fault systems, with little off fault seismicity.

3.3 Fluid induced seismicity : exploring the role of injection sce-
nario.

The fluid operations associated with natural resources exploitation (shale gaz, geothermal en-
ergy, water resources) trigger a significant amount of seismicity (Deichmann & Giardini, 2009;
Ellsworth, 2013; Stabile et al. , 2014). This induced activity is interpreted as the failure of
preexisting critical faults following direct pore pressure variations, or indirect poro-elastic stress
perturbations caused by the fluid flow at depth (Healy et al. , 1968; Raleigh et al. , 1976; Frohlich,
2012; Ellsworth, 2013).

Observations of induced seismicity sequences report a sensitivity of the seismicity rate on the
injection scenario (maximum pressure in the well, rate of pressure increase, injection rate) (Healy
et al. , 1968; Frohlich, 2012). Depending on the injection scenarios, induced sequences may be
delayed, even a long time after the end of injection (post-shut in seismicity) (Healy et al. , 1968;
Deichmann & Giardini, 2009). The magnitude content is also known to be different for induced
and natural seismicity, as shown by the change of the magnitude-frequency distributions (this
issue is discussed in section 2.2 of chapter 1). Here again, the injection scenario is suspected
to control the magnitude content, as shown by the increase of maximum magnitude with the
volume of injected fluid (McGarr, 2014; Galis et al. , 2017).

In this framework, earthquakes are indirect evidences of pore pressure changes at depth, that
are not yet easily monitored. Induced seismicity could eventually be used to monitor fluid flow,
but this requires to have a better knowledge of the physics of fluid-fault interaction. To study
this issue, the fault models illustrated in figure 1.12 could be coupled to a fluid flow model (Segall
& Lu, 2015; Kroll et al. , 2017). This was the purpose of the PhD project of Michelle Almakari.
Under my co-supervision, Michelle Almakari developed a fault model coupling elasticity, rate-
and-state friction, and fluid diffusion in a 2D framework. The fault configuration used in her
study is depicted in figure 1.12c’. A simple linear fluid diffusion model was coupled to the
mechanical part, in the form of a local injection with controlled pressure, and 1D diffusion along
the fault’s strike. She then conducted a parametric study, published in Almakari, M.et al. (2019)
in order to investigate the dependence of seismicity rate and magnitude content on the injection
scenario.

As illustrated in figure 3.7a., the injection scenario consists of a first phase of linear pore
pressure increase at a rate β (phase I), followed by a period with constant pressure Pmax at
the injection well (phase II). Because of diffusion, the mean pore pressure in the fault follows a
similar trend but delayed in time. In response to this injection, slip is activated along the fault,
and seismogenic (velocity weakening patches) rupture as earthquakes.

The characteristics of the resulting seismicity are illustrated in figures 3.7a to d. Such an
injection scenario leads to a transient increase followed by a decay of the seismicity rate, that
tracks the pressure rate variations along the fault rather than the pressure itself (figure 3.7a.).
The end of the injection is associated with a period of quiescence preceding the return to the
background level (seismicity before injection). The magnitude content is also affected by the
injection, in particular for the largest events of the sequence (figure 3.7b.).

The effect of the injection scenario on the increase of seismicity rate could be quantified by
the maximum seismicity rate reached during the induced sequence (Almakari, M.et al. , 2019), as
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Figure 3.7: Seismic activity and pore pressure evolution resulting from a local fluid injection into
the fault model illustrated in figure 1.12c’. a. Pore pressure, pore pressure rate and seismicity
rate. Numbers I to V define five different stages of the numerical experiment. r0 is the seismicity
rate before injection. rmax is the maximum seismicity rate achieved at time tmax. At time ts,
the seismicity rate returns to r0. tend marks the end of injection. b. Normalized magnitude-
frequency distributions during the different stages illustrated in figure a. c. Magnitude evolution
of induced earthquakes during the injection. The red line is a moving average. d. Cumula-
tive number of earthquakes and cumulative seismic moment released during the injection. From
Almakari, M.et al. (2019).

illustrated in figure 3.8. Overall, the maximum seismicity rate increases with both the maximum
pressure Pmax and the injection rate β. Interestingly, the model predicts a saturation of the
maximum seismicity rate increase when the pressure rate reaches a threshold. Such a saturation
is not predicted by other models of induced seismicity that do not account for magnitude changes
(Dieterich, 1994). As discussed in Almakari, M.et al. (2019), and in section 2.2, the saturation
of the maximum seismicity rate is compensated by a change in the magnitude content where
larger events become more frequent during the injection period (see figure 2.4).

This study has demonstrated the importance of both the pressure rate and the maximum
pressure in the control of the seismic activity. This study would however need to be extended
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r
r

Figure 3.8: Maximum seismicity rate increase rmax/r0 for different injection scenarios in the
heterogeneous fault model shown in figure 1.12c’. r0 is the seismicity rate on the fault under
constant tectonic loading alone (prior to injection). Numerical results are shown with solid lines.
The dashed lines were obtained using the model by Dieterich (1994) under an effective stressing
rate τ̇0, that is ignoring the possibility of stress redistributions and different magnitudes. From
Almakari, M.et al. (2019)

to the case of a 2D fault, or to the case of a fault network, in particular to study the important
question of post shut-in activity that was not present in these simulations. Note also that only one
particular fault model, with a specific frictional properties distribution was used here. Frictional
properties also control to some extent the characteristics of injection induced seismicity (Kroll
et al. , 2017). This issue would require more investigation. An interesting point concerns the
role of aseismic slip in such scenarios. Because of the particular frictional properties used here
and the 2D geometry, a negligible amount of aseismic slip occurred, so that this issue could not
be discussed in this study.

The modeling of the second earthquake swarm in Corinth by Dublanchet, P. & De Barros
(2020) (section 3.1) also provides insights into how injection scenarios control the seismic activity.
It was shown in section 3.1 that the rate of increase of the average pore pressure in the fault
(the pressurization Πm) controls the earthquake migration speeds. The other important result
was that aseismic slip is an intermediate between fluid flow and earthquake triggering. Even in
the presence of aseismic slip, the injection parameters are therefore crucial in the properties of
induced seismicity.

Here again, a very small range of fault models have been tested against injection so far, and
extensive parametric studies with different fault configurations would be necessary to assess the
role of injection scenario. In this framework, the consideration of fault networks is crucial.

3.4 Fluid induced aseismic slip

Induced seismicity is not the only mode of fault slip reactivation. As suggested by the temporal
dynamics of repeating earthquakes in the framework of geothermal stimulations (Bourouis &
Cornet, 2009), and by in situ fault injection experiments (Guglielmi et al. , 2015), fluid also
triggers aseismic (slow) slip events on faults. A conceptual model of hydro-mechanical fault
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interactions has emerged where the fluid injection triggers an aseismic slip front propagating
along the fault and causing the failure of brittle asperities, at the origin of earthquakes. This
conceptual model is for instance proposed and studied by De Barros et al. (2020); Dublanchet,
P. & De Barros (2020).

An alternative way of studying fault slip reactivation is to simplify the problem and consider
only the interaction between fluid flow and aseismic slip. This is the purpose of a study published
in Dublanchet, P. (2019b). It consists of a numerical and theoretical investigation of the
dynamics of aseismic shear cracks trigerred by a fluid injection in a strengthening rate-and-state
interface. The fault model used here is a simple 1D interface within a 2D medium, characterized
by homogeneous velocity strengthening properties (i.e. the fault model a’ in figure 1.12). Here
again, the fault model is injected in its center, with a control on the flow rate (or according
to Darcy’s law, on the pressure gradient at the injection well). This numerical experiment has
been conducted under different conditions of initial overstress. Under rate-and-state friction, the
overstress could be defined as the difference between the initial shear stress τ0 and the steady
state frictional stress τ0ss = fssσ evaluated from equation (1.5) at the loading rate v0 (vb in figure
1.12).

The early evolution of the slip rate along the fault is a localized slip perturbation characterized
by an exponential increase in slip rate (phase I and blue symbols in figure 3.9). Assuming a
constant injection rate, the maximum slip rate increases during phase I as (see figure 3.10b):

vm(t) = v0e
√
t/tI , (3.4)

where t is time, v0 the initial slip rate, and tI a characteristic time given by:

tI =
πa2σ2

4f20 q
2D

. (3.5)

In equation (3.5) σ the initial normal stress, D the hydraulic diffusivity along the fault, q the
pressure gradient at the injection point (proportional to injection rate according to Darcy’s law)
and f0 and a the reference friction coefficient, and the direct effect parameter of the rate-and-state
friction law.

This localized perturbation rapidly expands (phase II and black symbols in figure 3.9). As
illustrated in this figure, depending on the prestress conditions, the fluid injection triggers two
different types of propagating cracks. If initial stress is lower than the steady state stress τ0ss, a
so called steady crack propagates at constant speed. The maximum slip rate within the crack
increases slowly, i.e. as the logarithm of time. It is shown in Dublanchet, P. (2019b) that the
rupture speed (the crack expansion speed) vr is given by:

vr =
f0qD

τr − τ0
, (3.6)

where τ0 is the initial shear stress along the fault and τr an equivalent residual shear stress within
the crack that ignores pore pressure. The stress difference τr − τ0 is positive, because of velocity
strengthening behavior that leads to an increase of steady state friction coefficient with slip
rate. Note that equation (3.2) used in section 3.1 for the migration of fluid induced earthquakes,
derives from equation (3.6). In doing so we have defined Γ = τr−τ0 as the velocity strengthening
fracture energy density, and we have rewritten qD as ΠmL/2. Γ is what slows down the slow
slip front, while the injection rate qD is what forces the expansion on a frictionally stable fault.
As illustrated in figure 3.10a, equation (3.6) is a good approximation for the expansion speed
observed in the simulations.

Interestingly, even if the injection controls the propagation speed, the slip front expands faster
(linearly in time) than the pressurized region (as

√
t). An approximate formula is also derived

in Dublanchet, P. (2019b) for the maximum slip rate. It increases as :
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(a) No overstress (b) Positive overstress

Figure 3.9: Example of slip triggered by a local fluid injection in a velocity strengthening fault.
Top figures show slip rate v profiles at different times indicated by the symbols in the bottom
figures. Because of symmetry, only half profiles are shown. Bottom figures: slip front position L
and maximum slip rate vm evolution. a.: fault initially at steady state τ0 = τ0ss (no overstress).
b.: fault initially with a slight overstress τ0 > τ0ss. The red line in the top figures indicates
the reference level for expansion speed estimation. a, b and a/b are the rate-and-state frictional
parameters (and ratio of them) used here. Results are normalized using v∗ (initial slip rate), µ
(shear modulus), dc (critical slip for friction evolution), σ (normal stress). From Dublanchet,
P. (2019b).

vm(t) =
4f0qD

πbσ

[
1 +

1

2
ln

t

ts

]
, (3.7)

where ts is the characteristic timescale provided by:

ts =
(τr − f0σ)2 − (τ0 − f0σ)2

f20 q
2D

. (3.8)

Here again, equations (3.7) and (3.8) capture the log increase of maximum slip rate during phase
II (see figure 3.10b.).

If initial stress τ0 is higher than the steady state stress τ0ss an accelerating crack propagates,
with a maximum slip rate blowing up in a finite time. As expected in such systems (Ampuero
& Rubin, 2008), the rupture (propagation) speed increases proportionally to the maximum slip
rate. Then, the crack expansion is not any more driven by the fluid injection, but by the initial
prestress. The energy balance at the crack tip leads to self-similar profiles of slip, slip rate and
stress shown in figures 3.10c, 3.10d and 3.10e.

The theoretical solutions (3.4), (3.6) and (3.7) allow to relate hydraulic and frictional proper-
ties to the expansion speed of fluid driven aseismic fronts. This result could be used to interpret
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migration episodes in seismicity data, which are clearly faster than what is expected for pore
pressure diffusion (Duverger et al. , 2015; De Barros et al. , 2020), as illustrated by the Corinth
swarm analysis shown in section 3.1.
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Figure 3.10: Comparison between numerical and theoretical solutions for the slow slip front prop-
agation illustrated in figure 3.9. Right column: a. slip front position L in the absence of initial
overstress. Symbols indicate numerical solution, red dashed line labeled (1) is the solution (3.6).
b. Maximum slip rate vm evolution in the absence of initial overstress. Symbols are the numerical
solution, blue dashed line labeled (2) is the solution (3.4) and the red dashed line labeled (3), the
solution (3.7). Left column: Normalized slip rate v (c.), normalized slip δ (d.) and normalized
stress τ (e.) profiles for an injection on a fault with a slight overstress. Black lines are numerical
solutions. The profiles are centered at the slipping patch tip (L is the length of the slipping patch).
Red dashed lines indicate theoretical solutions from fracture mechanics theory (Lawn, 1993). ψ0

is a normalizing factor. a, b and dc are rate-and-state parameters. µ is the shear modulus, σ the
initial normal stress, and v∗ the initial slip rate before injection. From Dublanchet, P. (2019b).

3.5 Conclusion

As illustrated in this chapter, different approaches could be developed to improve our ability to
quantify slow slip and fluid flow from earthquake swarms, with the use of mechanical models.
One approach consists of developing mechanical models for particular, well analyzed swarms,
such as in the case of the Corinth rift. A second approach is to perform parametric studies
with models, in order to extract general relationships between seismic activity, aseismic slip and
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fluid flow. My contribution to these efforts lead to six publications over the past seven year.
One of them is the outcome of Michelle Almakari’s PhD project, co-advised by myself. Four of
these studies were made in collaboration with seismologists from Géoazur (University of Nice
Sophia Antipolis), in particular with M. Godano and L. De Barros. Because of the amount of
unknown parameters, parametric studies are often laborious, and it is still difficult to generalize
their conclusions to particular swarms, unless theoretical relationships are extracted. On the
other hand, the growing amount of seismological data about earthquake swarms is an interesting
opportunity to develop the first approach. This is one of my research projects, as detailed in the
last chapter (see section 4.1).
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Chapter 4

Research perspectives

In this last chapter I present how I intend to pursue my research projects in the future. The
studies summarized in the last two chapters have shown the importance of coupling seismolog-
ical observations and physics-based models to unravel fault processes. Another interesting and
complementary approach is to study fault slip in the laboratory. Fault reactivation experiments
present the advantage of being controlled, and allow a detailed monitoring of slip, stresses and
fluid flow. Therefore, I plan to extend the study of fault slip phenomena by confronting model
predictions to both seismological and laboratory experiments. For that, I suggest first to pursue
the modeling of specific earthquake swarms, making use of the near fault observatories data
delivered in the framework of the EPOS program (first section of the chapter). In a second
step, I propose to develop the modeling of rock mechanics experiments: this is the purpose of
the second section, where a preliminary study about shear induced permeability enhancement is
presented. Permeability enhancement during fault slip reactivation is indeed suspected to play
an important role in the hydro-mechanical processes of fault zones. My final project is to extend
the theoretical and numerical investigations of fault models coupling elasticity and friction by the
study of effective frictional properties. This latter issue is crucial in the perspective of connecting
seismological and laboratory experiments.

4.1 Quantifying slow slip and fluid flow underlying seismic swarms

In Europe, seven geophysical observatories maintained through the EPOS project record thou-
sands of earthquakes yearly between magnitude 0-1 and 4. Such microearthquakes are able
to provide unprecedented in situ information about the stress accumulation associated with
fundamental geological processes (volcanic eruption, reactive fluid flow, nucleation of damaging
earthquakes), at a daily and meter scale resolution. However, this intense activity remains largely
under exploited in the analysis of deep processes. In the coming years, I propose to tackle this
problem by the use of physics-based fault models discussed in the previous sections.

Microseismic analyses usually provide earthquake catalogs, listing the location in space and
time, the magnitude, and from time to time the source parameters (fault orientation, amount
of slip and stress drop) of each earthquake recorded in a given area. This information is tra-
ditionally used to image fault structures at depth (Chiaraluce et al. , 2011), or interpreted in
terms of tectonic stress conditions (Hardebeck & Michael, 2006; Narteau et al. , 2009). This
latter approach has allowed to identify many processes triggering earthquakes: slow aseismic
slip on major tectonic faults (Uchida et al. , 2003), fluid migration and operations at depth
(Shapiro & Dinske, 2009b), rainfall events (Hainzl et al. , 2006), stress redistribution after large
earthquakes (King et al. , 1994), volcanic intrusions (Ágústsdóttir et al. , 2016), the flow of ice
in glaciers (Faillettaz et al. , 2011), landslides (Helmstetter & Garambois, 2010) tidal stresses
(Cochran et al. , 2004), mining operations (Gibowicz, 2009), impoundment of reservoirs behind
dams (Gupta et al. , 1969). Among all these processes, aseismic slip and fluid flow seem to play
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an important role in triggering seismicity.
A large majority of these studies rely on the Coulomb failure model (Brace & Byerlee, 1966),

which leads to instantaneous triggering if a stress perturbation exceeds a frictional resistance
on a specific fault. Although this model indicates how stresses and seismicity rates could be
correlated, it ignores many important aspects of the earthquake physics (stress redistribution,
time and slip dependent friction (Dieterich, 1979)). It is furthermore unable to make any mag-
nitude predictions. Alternatively, seismicity could be interpreted in light of experimental results
obtained at the laboratory scale (Amitrano, 2003). However, the physical models supporting the
experimental results are usually not fully understood.

At the same time, advanced mechanical models of fault generating earthquakes have been
developed (see introduction section for a brief description). As shown in the previous chapters,
I have contributed to this modeling effort. Unfortunately, this class of models is rarely used to
interpret specific microseismic sequences. One of the reasons is that too few of them are really
adapted to study the problems of microearthquake sequence dynamics: current earthquake mod-
els do not account at the same time for a 3D geometry, full elasto-dynamic stress interactions,
slip dependent frictional behavior, and earthquake related permeability enhancements. Never-
theless, in very specific situations involving for instance the reactivation of a particular fault,
existing models could be used to improve traditional interpretation. The work on the Corinth
swarms (section 3.1) is an example of what could currently be done to quantify aseismic slip and
fluid flow from seismicity observations.

Near Fault Observatories (NFOs) monitoring seismicity in the most active regions of Europe
in the framework of the EPOS project (Festa et al. , 2018) is an unprecedented opportunity
to fill the existing gap between earthquake models and microseismic observations. The seven
geophysical observatories will continuously monitor and distribute in open access geophysical
data, in particular earthquake catalogs. The seismicity occurring in these areas is in many cases
suspected to be driven by fluid (eventually magmatic) flow or deep aseismic slip on tectonic
faults. The EPOS dataset is the ideal candidate to probe our ability to quantify these processes
with seismicity.

In this framework, I propose to pursue the quantification of aseismic slip and hydraulic prop-
erties underlying seismic sequences with physics-based fault models initiated with the modeling
of Corinth swarms. This will eventually require to develop new fault models that are adapted to
microseismic sequences, and to perform an important amount of data analysis, in order to ex-
tract as much information as possible about the events of a particular sequence (location, source
parameters).

New fault models for microseismic sequences will have to incorporate fundamental aspects
of earthquake physics: a distributed fault population in a 3D geometry, the presence of fluids,
rate-and-state friction (Dieterich, 1979), elastodynamic stress redistributions, permeability en-
hancement. The objective is that thousands of earthquakes could be computed within hours or
days. For that, both a physical and a numerical optimization will have to be conducted. The
physical optimization could rely on a simplification of the elastodynamic interaction computa-
tion. The numerical optimization will essentially consist of a parallelization of the simulators,
mixing shared memory (open MP) and distributed memory (MPI) approaches. Such earthquake
simulator dedicated to microseismicity has never been developed. The main challenge consists
of achieving a satisfactory balance between computational efficiency and physical accuracy. This
could be achieved through successive benchmarking steps, after each simplification of the elastic
interactions.

Importantly, the fault model conception will have to be guided by the seismic sequence itself.
Preliminary location will allow to discriminate between the reactivation of a single fault or a
network of faults for instance. Magnitudes provide an idea of the typical fault sizes to consider.
For that purpose, the development of the models should be accompanied by an analysis of the
seismological data. Depending on the specific sequence considered, earthquake relocation, focal
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mechanism and source parameter estimations will be of great support. For that reason, I would
like to develop further the collaborations with seismologists, possibly in the framework of an
ANR or ERC project.

As shown in section 3.1, the quantification of deep aseismic slip and fluid flow will rely on
the comparison between synthetic (coming from fault models) and real earthquake sequences.
This could be done from first order statistical features of the sequences such as the distribution
of magnitudes and time delays between earthquakes, or eventually from the migration speeds
(if migration occurs). In other words, the aim is to find the amplitude of forcing necessary to
explain these characteristics.

4.2 Modeling laboratory fault slip

My second research perspective is to make use of mechanical fault models in the framework of
rock mechanics experiments. As shown in section 2.6, fault slip phenomena could be studied in
the laboratory, using saw-cut rock samples loaded in a press. Such experimental devices have
been known to generate stick slip behavior for a long time (Brace & Byerlee, 1966), an analog
to natural earthquakes. In the laboratory, loading mechanisms are controlled and fault slip
could be monitored in great details, which is not always possible for natural faults. However,
experimental results on fault slip processes are rarely confronted to mechanical model predictions.
This however could bring a new light on our understanding of fault processes, as illustrated by
the preliminary study about shear induced permeability enhancement detailed in the following.

Many evidences report that permeability is not constant during fluid induced fault slip, first
because it depends on effective stress which is reduced by pore pressure (Zoback & Byerlee,
1975; Rutter & Mecklenburgh, 2018), then because of shear induced dilatancy that promotes
permeability enhancement (Wu et al. , 2017; Im et al. , 2018; Guglielmi et al. , 2015).

Estimating permeability enhancement during fault slip reactivation was the purpose of an
experimental study conducted in the framework of Michelle Almakari’s PhD project, and in
collaboration with F.X. Passelegue (EPFL). It was recently been published in Almakari, M.et al.
(2020). A schematic view of the sample is shown in figure 4.1. The experiment consisted of:
first loading the sample in a tri-axial press up to 90 percent of the peak strength of the fault,
then injecting a fluid (pump A) while measuring average fault slip, local strain, average shear
stress and pore pressure. These measurements were performed with a displacement sensor, a set
of strain gauges, and through pumps A and B. This protocol was applied under three different
levels of confining stress (30, 60 and 95 MPa). Typical results are shown in figures 4.2a., 4.2b.
and 4.2c. Before starting the injection, the sample was saturated with a fluid so that the pore
pressure within the fault is initially at 10 MPa. After the loading phase, pore pressure increases
in boreholes A and B, with a time delay corresponding to the fluid diffusion along the fault (bulk
permeability being in these samples much smaller than along fault permeability). In all cases,
the injection triggers fault slip releasing shear stress. Fault slip is here a combination of aseismic
slip and rapid slip events (shown as black dots in figures 4.2a., 4.2b. and 4.2c.).

In a second step, we used the pressure measurements (pumps A and B) to invert for an
effective time-dependent diffusivity along the fault. For that, we used both a deterministic
inversion approach and a Bayesian method in order to properly estimate the uncertainty on the
inverted diffusivity. The deterministic approach makes use of the adjoint state method (Plessix,
2006), the Bayesian inversion is built on a Monte Carlo Markov Chain algorithm (MCMC)
(Metropolis et al. , 1953; Hastings, 1970). The inversion was conducted in collaboration with H.
Chauris and A. Gesret (MINES ParisTech). In all cases, the forward problem was a 2D diffusion
equation with a time dependent effective diffusivity D(t) and a source term located at borehole
A. The source term consists of a controlled injection pressure taken from the measurements of
pump A. The diffusion equation was solved numerically with a finite difference scheme on the
elliptical fault depicted in figure 4.1 (i.e. the saw cut fault geometry), assuming homogeneous
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Figure 4.1: Schematic diagram of the andesite saw cut sample used to perform fluid injection
experiments. The fluid is injected in pump A. Pc is the confining pressure, and σ the axial load.
From Almakari, M.et al. (2020).

Neumann boundary conditions (no fluid flux on the boundaries of the fault, as expected in the
experiment).

The inverted diffusivity history is shown in figures 4.2d., 4.2e. and 4.2f. In each case, the
effective diffusivity increases by one order of magnitude during fault slip reactivation. The me-
chanical origin of the diffusivity enhancement observed in this study in however still unclear. The
most robust feature outlined in Almakari, M.et al. (2020) is that effective diffusivity increases
with decreasing effective normal stress acting on the fault (difference between applied load pro-
jected on the normal to the fault surface and average pore pressure derived from the numerical
solution of pore pressure diffusion equation). Normal stress dependence of permeability has al-
ready been reported in many experiments (Zoback & Byerlee, 1975; Rutter & Mecklenburgh,
2018), and could easily be interpreted as the (possibly non-linear) closure of joints and cracks. If
one considers the fault as one of such cracks, this could explain the increasing diffusivity. As fluid
is injected and diffuses along the fault, normal stress is reduced and permeability enhancement
leads to an effective diffusivity increase. An effect of fault slip is however not excluded here, but
we were not able to provide a robust evidence for permeability changes related to shear slip. If
slip induced permeability enhancement occurred in these experiments, this study shows that it
was likely a second-order effect compared to the effective stress reduction.

Note that the slip events recorded during these experiments were used to evaluate the effect
of prestress on the rupture speed discussed in section 2.6.

This preliminary study of fault diffusivity enhancement during slip activation has demon-
strated the important potential of analyzing laboratory experiments in light of hydro-mechanical
models and advanced inversion techniques. A short term research perspective is to develop fur-
ther such approaches in order to get a better understanding of slip related fault permeability
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d. Pc = 30 MPa e. Pc = 60 MPa f. Pc = 95 MPa

Figure 4.2: Top line: pore pressure recorded in pumps A and B (blue), fault slip (red), and
fault shear stress (black) during experiments at 30 MPa (a.), 60 MPa (b.) and 95 MPa (c.)
of confining pressure. Black dots indicate rapid slip (stick slip events). Bottom line: effective
time-dependent diffusivity inverted from the pressure measurements shown in the top figures for
confining pressures 30 MPa (d.), 60 MPa (e.) and 95 MPa (f.). The effective diffusivity is
considered uniform on the fault, and time-dependent. The red and blue solid lines correspond to
the initial and final diffusivity models obtained from deterministic inversion. The colors show
the probability density function resulting from the Bayesian inversion (MCMC). The mean model
obtained by MCMC is shown in black, and the quantiles are represented with the dashed colored
lines. From Almakari, M.et al. (2020).

enhancement. It could be possible for instance to include the fault slip data in the inversion
procedure. This requires to use a coupled hydro-mechanical model to solve the direct problem,
such as the ones developed in Almakari, M.et al. (2019) and Dublanchet, P. (2019b). The
inversion procedure should also be modified to account for these new data. Similarly, new exper-
iments using a network of pressure sensors are planned (in collaboration with F.X. Passelegue
and collaborators in EPFL) and will allow to solve for the complete space and time diffusivity
pattern. The increase of pressure and slip observations will therefore lead to a finer understand-
ing of diffusivity changes. Another improvement will be to consider the full geometry of the
rock sample in the hydro-mechanical model, and not the simple interface geometry of the models
illustrated in figure 1.12. This latter issue is one of the motivations for Jinlin Jiang, who started
his PhD one year ago in the geophysical group of MINES ParisTech.

4.3 Effective friction

In the perspective of connecting experimental and natural fault behavior, the question of upscal-
ing mechanical properties arises. It is particularly true for frictional properties. The rate-and-
state friction law, used to explain many observations of fault slip at the kilometer scale, has been
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derived from laboratory experiments, on centimeter to meter scale rock samples. Many studies
suggest that rate-and-state friction could govern fault slip at large scales, but what is the link
between frictional properties estimated in the laboratory and frictional properties of kilometric
scale faults? Is it possible to define effective frictional properties?

The numerical studies presented in the last chapters have revealed that many processes are
controlled by an effective rate-and-state parameter defined as the difference between the spatial
average a0 of the rate-and-state parameter a and the spatial average b0 of the rate-and-state
parameter b. The transition between isolated ruptures and system-size ruptures occurs when
a0 − b0 = 0, for a set of asperities distributed on a creeping fault (Dublanchet, P. et al.
, 2013a). Isolated ruptures and system size ruptures would then correspond to an effective
velocity strengthening and effective velocity weakening behavior respectively. In this particular
model involving seismogenic asperities and fault creep, a0− b0 could be regarded as the distance
between the actual and a critical asperity density (see section 2.1). In this sense, a0− b0 controls
also the regularity of interacting repeating earthquakes (see section 2.4). The difference a0−b0 is
also the main parameter controlling the characteristic timescale for the Omori decay of repeating
earthquake activation following a coseismic stress perturbation (Dublanchet, P. et al. , 2013b).
This is presented in details in section 2.3.

The ratio a0/b0 is also one of the parameters controlling the nucleation regimes on a het-
erogeneous rate-and-state fault, as discussed in section 2.5 and in Dublanchet, P. (2018).
Importantly, nucleation regimes observed under heterogeneous friction are similar to what is
obtained under homogeneous friction (Rubin & Ampuero, 2005), and it is possible to define a
critical nucleation length for each of these regimes, as illustrated in figure 4.3. The expressions
derived in Dublanchet, P. (2018) for the critical nucleation length not only involve the spatial
averages a0 and b0, but also different characteristics of the frictional heterogeneity, in particular
the characteristic wavelength λ of friction variations along the fault. On one hand, these results
show that at a larger scale, earthquake nucleation is similar to what happens at small scale, so
that we can define effective properties. On the other hand, it is not sufficient to consider the
spatial average of frictional parameters to upscale the friction law, other properties need to be
taken into account.

This latter example is the main motivation to extend the investigation towards the definition
of an effective frictional theory. The second motivation is that so far, I have not analyzed the
effect of spatial heterogeneities in dc, which is a possible property characterizing natural faults,
as suggested by the scale dependence of fracture energy (Ide & Aochi, 2005; Abercrombie &
Rice, 2005). Furthermore, previous work about effective friction only focused on slip-weakening
law (Campillo et al. , 2001; Voisin et al. , 2002; Latour et al. , 2011). To further investigate this
issue, I propose two approaches.

First I will reanalyze the whole synthetic database developed over the last years from models
with heterogeneous friction. This database is made of all the synthetic earthquake catalogs
produced for the studies presented in the last chapters. Synthetic catalogs include source location,
time, extent, the source time function. In addition, I have also conserved the mean slip, mean
shear stress and mean slip rate history of the fault. The purpose would be to compute all the
statistical properties of earthquakes and slow slip events that were not yet considered in previous
studies, and to determine whether the mechanical control involves effective frictional parameters.

In a second step, I will perform new numerical simulations inspired from the original labora-
tory experiments that led to rate-and-state friction theory. These experiments consist of velocity
stepping tests (Dieterich, 1979), where the slip rate on the fault is controlled, while friction is
measured. The idea here is to perform numerical velocity stepping tests on a wide range of faults,
characterized by different kinds of frictional heterogeneity (involving variable a, b or dc). The
synthetic averaged frictional response would allow to define effective a, b and dc parameters.

Finally, this research project about effective friction could benefit from an experimental
approach, such as the one detailed in the previous section. Fault slip experiments with heteroge-
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neous rock samples are currently developed by collaborators in EPFL rock mechanics laboratory.
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Figure 4.3: Critical length for the main shock nucleation regimes illustrated in figure 2.8. Lc is
the critical nucleation length, L∗ is a characteristic length scale of the problem. b0 is the average
rate-and-state parameter b, dc is the critical slip of rate-and-state friction, σ is the normal stress,
µ the shear modulus. f and α are the parameters characterizing the frictional heterogeneity. c is
a constant involving the frictional parameters. λ is the wavelength of a− b variations along the
fault, and λ̃ the normalized wavelength λ/Lb. See Dublanchet, P. (2018) for details.

4.4 Conclusion

The three research perspectives discussed in this chapter aim at extending the use of mechanical
fault models in three different directions. First to provide a new interpretation of natural and
induced seismic swarms. Then, to analyze new laboratory fault slip experiments. Finally to
bridge the gap between the scale of laboratory faults and the scale of natural faults. For all these
projects, preliminary studies have been conducted and show promising results. Two seismic
swarms of the Corinth area have been used to quantify aseismic slip and overpressure in the
Corinth rift area, some progress has been made on shear induced diffusivity enhancement, and
effective rate-and-state frictional parameters have been identified has controlling fault slip process
on heterogeneous faults. These preliminary studies are summarized in 3 publications. The study
of permeability enhancement from modeling of laboratory data is one of the results of Michelle
Almakari’s PhD, and the first publication obtained in the framework of our collaboration with
the rock-mechanics laboratory in EPFL.

These different projects will require new developments, in particular new fault models more
adapted to seismic swarms and laboratory samples. A new approach to model experimental
faults is currently developed by J. Jiang, a PhD student co-advised by F. Pellet (INSA Lyon),
D. Bruel (MINES ParisTech) and myself. Inversion techniques will need to be developed for
specific problems of fault slip, as initiated in the study of diffusivity enhancement. For that,
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Chapter 4. Research perspectives 4.4. Conclusion

the expertise of the Geophysical research group of MINES ParisTech in the field of inverse
problem will be of great help. Finally, seismological analysis of earthquake swarms will need to
be conducted in parallel with model developments. This latter part will rely on my collaborations
with seismologists of Géoazur.
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S U M M A R Y
Many large earthquakes are preceded by slow slip and foreshock sequences. These precursory
phenomena activate the hypocentral region of the main-shock fault. However, slow slip events
and earthquake swarms do not systematically lead to large earthquakes and cannot be consid-
ered for short-term prediction. Understanding what controls the occurrence and the dynamics
of precursors on tectonic faults is of critical importance to improve seismic hazard assessment.
This study shows how frictional heterogeneity on a finite planar fault can explain the different
fault behaviours preceding a large earthquake in a unified manner. It is demonstrated that
under heterogeneous conditions, four different regimes of earthquake nucleation occur. All of
them are characterized by slow slip acceleration, but only one involves a growing foreshock
activity. The transitions between the different regimes, and the fault slip history preceding
the main-shock are in the four regimes controlled by effective friction parameters, and by a
fracture mechanics criterion involving the characteristic wavelength of heterogeneity. The ef-
fective friction theory developed here for earthquake nucleation may have major implications
in the understanding of other fault processes under heterogeneous conditions, such as dynamic
rupture or episodic slow slip events.

Key words: Friction; Seismic cycle; Rheology and friction of fault zones; Earthquake
hazards; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

Understanding the initiation of large earthquakes (nucleation) is
critical to improve short-term prediction. Large earthquakes are of-
ten preceded by foreshock sequences lasting from less than one
hour to several months (Jones & Molnar 1976, 1979; Bouchon
et al. 2013), located in the vicinity of the main-shock hypocentre,
and characterized by an increasing seismicity rate. Many evidences
suggest that these foreshock sequences are driven by the progressive
acceleration of slow slip in the hypocentre region of the main-shock
(Dodge et al. 1996; Bouchon et al. 2011; Kato et al. 2012; Bouchon
et al. 2013; Chen et al. 2013). Precursory slow slip is also fre-
quently observed in the laboratory before stick-slip events on pre-
existing faults (Dieterich 1978; Okubo & Dieterich 1984; Ohnaka
& Shen 1999; Nielsen et al. 2010; Latour et al. 2013). Foreshock se-
quences associated with precursory aseismic slip are also reported
on laboratory faults (McLaskey & Kilgore 2013). The mechanics of
these earthquake nucleation phenomena is still poorly understood:
it is for instance not clear why foreshock sequences are not system-
atically observed before natural large earthquakes. Furthermore, the
dynamics of slow slip acceleration is still debated. Many fault mod-
els considering earthquakes as slip instabilities developing along
a frictional fault have been proposed to explain precursory slip

(Dieterich 1992; Ohnaka 1992; Campillo & Ionescu 1997; Uenishi
& Rice 2003; Rubin & Ampuero 2005; Ampuero & Rubin 2008;
Viesca 2016a). In these models, the dynamic rupture (main-shock)
is preceded by slow slip acceleration on a fault segment either of
constant width or enlarging as slip rate blows up. Dynamic rupture
starts when this small patch expands at a rate of the order of elastic
wave speeds. This usually occurs when the fault patch has reached
a critical size called the critical nucleation length, and the slip rate
is high enough. Very few models provide a general framework to
account for simultaneous foreshock occurrence and aseismic slip
acceleration. It therefore remains unclear whether foreshocks are
mainly driven by aseismic slip, or triggered through an independent
cascading effect. As suggested by Ohnaka (1992) and Abercrombie
& Mori (1996), the heterogeneity of fault frictional resistance might
play a role in foreshock triggering. In this model, foreshocks are
triggered as the nucleation slow slip front reaches a lower resistance
asperity so that slow slip dominates the whole process. However,
foreshocks may also perturb the slow slip, and this effect is usually
not considered.

Here a new fault model for earthquake nucleation is proposed, al-
lowing to investigate in more details the role of fault heterogeneity.
The model consists in a finite planar fault sheared between two elas-
tic media, where slip is resisted by a heterogeneous Dieterich–Ruina
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rate-and-state friction (Dieterich 1979; Ruina 1983). This formu-
lation allows aseismic slip and small earthquakes to spontaneously
emerge and interact along the fault. In the following, fault slip evo-
lution on the heterogeneous fault will be computed numerically in
order to identify how frictional parameters control the main features
of the nucleation process. The results will be confronted to theoret-
ical developments based on linear fracture mechanics (Lawn 1993)
and on a new frictional homogenization theory extending the stud-
ies by Campillo et al. (2001), Voisin et al. (2002) and Latour et al.
(2011) on the slip weakening friction law. This will allow to charac-
terize the dynamics of slip acceleration, the conditions for foreshock
occurrence and the critical nucleation length under heterogeneous
frictional conditions.

2 M E T H O D

Let assume the fault model depicted in Fig. 1, consisting in a linear
infinite interface between 2-D elastic half-spaces. Let consider a
constant stressing rate τ̇b in the far field so that the medium under-
goes antiplane (mode III) deformation. Let assume mixed boundary
conditions on the fault: Dieterich–Ruina type rate-and-state friction
(Dieterich 1979; Ruina 1983) on a finite fault segment of length
2L, and vanishing slip outside. Normal stress σ is constant along
the fault. Fault heterogeneity is modelled by a constant a = a0 rate-
and-state parameter along the fault, and a λ periodic b parameter
(Fig. 1b), so that velocity weakening (VW) and velocity strength-
ening (VS) patches alternate. b(x) is parametrized as

b(x) = b0 + �bφ(x), (1)

where b0 and �b are constants, and the functional φ is defined by

φ(x) =
{ −1 if 1/4 < E[x/λ] < 3/4

+1 otherwise,
(2)

E being the fractional part. �b has been chosen so that b is always
positive, and a − b alternates in sign. This constrains �b/b0 to
remain between 1 − α and 1, α = a0/b0. The parameter 0 < f < 1
is therefore introduced so that

�b

b0
= 1 − α + f α. (3)

As mentioned in Appendix C, small earthquakes may nucleate on
the VW patches if they are larger than the local nucleation length
2Lw. The ratio ρw = λ/4Lw between the VW patch length and 2Lw

(eq. C1) is therefore introduced.
This study focuses on the effect of frictional heterogeneity

(parametrized by α, f and ρw) on the nucleation of large earth-
quakes on the fault. Boundary conditions (no slip for |x| > L),
remote loading (normalized stressing rate τ̇b = 10−5) and normal-
ized damping parameter (β = 10−8) will remain unchanged in this
study. Initial conditions are defined as follows: normalized slip rate
v(x, 0) = 1 and normalized state variable θ (x, 0) randomly dis-
tributed between 10−5 and 10. The initial conditions do not influ-
ence the results reported here. The governing equations for the fault
evolution are provided in Appendix B, along with the main non-
dimensional parameters. For a set of α, f and ρw, governing eq. (B9)
are solved numerically to get the slip rate evolution v(x, t) = δ̇(x, t)
along the fault. Details about the numerical method are provided in
Appendix B.

Figure 1. 2-D heterogeneous finite fault model. (a) Geometry and boundary conditions. σ is the normal stress, τ̇b is the remote stressing rate, δ is antiplane
slip on the fault, L is the half fault length. (b) Distribution of a and b rate-and-state frictional parameters along the fault.
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Figure 2. General slip behaviour for α < 1. (a) Maximum slip rate history. (b) Cumulative slip profiles for the period highlighted in green in panel (a). One
profile is represented at the onset and at the end of each earthquake occurring on the fault. (c) Slip rate evolution during the nucleation of the main-shock
E. Horizontal axis indicates time remaining to main-shock E. Results were obtained with α = 0.9, f = 0.5 and λ = 6.4 (ρw = 1.04). (d) Total number of
foreshocks observed during the nucleation process of a main-shock. α = a0/b0 is the ratio between averaged rate-and-state friction parameters. ρw = λ/4Lw

is the normalized wavelength of heterogeneity. f measures the amplitude of b parameter heterogeneity. ρc is the theoretical critical normalized wavelength of
eq. (4) allowing foreshocks sequences to occur when ρw > 0.5.

3 R E S U LT S

As shown by Dublanchet et al. (2013), large earthquakes under
heterogeneous frictional conditions may rupture the entire fault
segment only when α < 1. The parametric study will therefore be
restricted to this domain. For α < 1, the fault undergoes a global
stick-slip cycle, as depicted in Figs 2(a) and (b). Locked phases
(negligible slip rate, no accumulation of slip) alternate with rapid
slip events affecting the whole fault segment (main-shocks). After
several cycles, the fault looses the memory of the initial conditions
which do not influence the nucleation process of the main-shock.

As illustrated in Figs 2(b) and (c), the main-shock nucleation in-
volves a progressive acceleration of the background slip rate towards
the radiative threshold vd defined in Appendix B. Simultaneously,
some slip is accumulated on a small segment of the fault, which

will be called nucleation patch in the remaining text. These general
features are observed for the entire parameter range investigated
here. In the example of Fig. 2, the slip rate increase is accompanied
by rapid excursions of maximum slip rate above vd associated with
the emplacement of a small offsets on the fault. These events could
be considered as foreshocks. They are not systematically observed
during nucleation. As shown in Fig. 2(d), foreshock occurrence is
mainly controlled by α and ρw who need to be high enough. More-
over, foreshock productivity increases as the averaged frictional
properties get closer to the critical value α = 1. Note that the am-
plitude of the b perturbation (parametrized by f) does not modify
significantly these features.

These results suggest that two conditions are needed to get fore-
shocks on the fault. First VW patches need to be larger than critical
to rupture as an earthquake. In other words, ρw has to be larger
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than some value of order 1, such as ρw > 0.5 (Fig. 2d). The sec-
ond condition is satisfied if the rupture of a single VW patch is
not able to degenerate into a large rupture. From the results shown
in Fig. 2(b), the rupture of a single patch could be modelled as a
small crack. The accumulation of such small ruptures forms a larger
crack (the nucleation patch itself). In this framework, one could use
linear fracture mechanics theory and assume that dynamic rupture
(main earthquake) occurs when the stress concentration ahead of
the nucleation crack (quantified by the stress intensity factor) is
large enough. The second condition could therefore be formulated
in terms of Irwin’s criterion (Lawn 1993): foreshock sequence oc-
curs if the stress intensity factor for the rupture of a single patch is
too small to allow rupture propagation through a VS patch. This idea
is developed in Appendices D1 and D2 and leads to the following
foreshock condition:

α < αc =
[

1 +
(

3π

4
− 1

)
f

]−1

, or,

ρw < ρc = 3π

16L̃w(α)

(1 − f )α

(1 − α/αc)2
, (4)

where L̃w(α) = Lw(α)b0σ/μdc. As shown in Fig. 2(d), condition
ρw > 0.5 along with (4) delimit to the first order the foreshock
domain in the parameter space. Note that for the set of parameters

considered in this study, the second condition (4) could approxi-
mately be replaced by α > 0.5.

Interestingly, some simulations did not produce any main-shocks,
especially for large α and large ρw (Fig. 2d). For this parameter
range, seismic activity consists in a swarm of small events inter-
preted as a frustrated foreshock sequence. This point will be dis-
cussed later.

More generally, one could identify four domains in the phase
diagrams of Fig. 2(d): (I), α < 0.5 and ρw < 0.5, (II): α > 0.5 and
ρw < 0.5, (III): α < 0.5 and ρw > 0.5 and (IV): α > 0.5 and ρw > 0.5.
Domain (IV) is the foreshocks domain. Each of these domains is
associated with a specific nucleation regime, as depicted in Fig. 3.
In addition to the presence (or absence) of foreshocks, they are
characterized by a different evolution of background aseismic slip
rate along the fault. In regime (I), slip rate increases progressively
towards failure on a fault patch of constant length. This constant
length is much larger than the typical wavelength λ of heterogene-
ity. Slip rate evolution in regime (II) is similar, but the fault patch
characterized by accelerated slip becomes larger as the slip rate in-
creases. The slip rate distribution is typical of a quasi-static crack
expanding as a linear function of log time to main-shock. The third
regime (III) is characterized by a localized acceleration of slip on
a single VW patch. Finally, in regime (IV), foreshocks are cou-
pled with a background slip rate increase. This background slip

Figure 3. Slip rate evolution during the four possible regimes of main-shock nucleation. Coloured solid lines correspond to contours of equal slip rate in the
distance along strike-ln time to failure space. The slip rate corresponding to one colour is indicated by the colour bar. Horizontal thick lines indicate the position
of a velocity weakening (in grey) and velocity strengthening (in black) patch motif of size λ. qs indicates quasi-static, qdr corresponds to quasi-dynamic rupture
(main-shock). Black dots in panel (d) correspond to foreshocks. The grey star indicates foreshock Fk detailed in Fig. D4. Tn and Ln denote the typical log
duration of the nucleation process and nucleation patch size respectively.
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Figure 4. Background slip rate v, state variable θ and distance to steady state 
 = vθ/dc evolution during nucleation of a main-shock. One profile is represented
each 10 time increase in maximum slip rate. Numerical solution is represented with the grey scale: darker colours corresponding to later times. Red profiles
correspond to λ averaged variables. For regime (IV), grey profiles correspond to low passed filtered version of the raw numerical solution, in order to remove
the foreshocks effect. Red profiles indicate averaged versions of the low passed filtered profiles. Blue lines indicate the homogenized length Lh defined in eq.
(C2). Green lines correspond to the local length Lw defined in eq. (C1). Lb0 = μdc/b0σ . The grey horizontal lines labelled λb0σ/μdc indicate the position of
a velocity strengthening (VS) and velocity weakening (VW) patch.

acceleration here again occurs as the expanding quasi-static crack
of regime (II). The nucleation crack expansion controls the spa-
tial distribution of foreshocks. Note that according to Appendices
D1 and D2, regimes (III) and (IV) could both be regarded as cou-
pling aseismic slip acceleration and foreshocks. In this framework,
regime (III) is a special case of regime (IV) where the first foreshock
immediately degenerates into the main rupture.

The most important feature is the difference between localized
acceleration process for low α values [regimes (I) and (III)], and the
expanding acceleration process for α values close to unity [regimes
(II) and (IV)]. More details about the evolution of background slip
rate v and state variable θ during nucleation are provided in Fig. 4,
along with the evolution of the variable 
 = vθ/dc quantifying
the distance to steady state (Rubin & Ampuero 2005). Note that
in Fig. 4(IV), the contribution of foreshocks has been removed to
highlight the evolution of background slip. To do that, numerical
solutions have been low passed filtered in T = ln (tf − t) so that
signals of the order of a foreshock duration have been removed.
The difference between localized and expanding acceleration is

also clear in the evolution of state variable θ and 
. Localized
acceleration is indeed systematically associated with 
 values much
larger than unity within the nucleation patch, whereas for expanding
nucleation regimes, 
 is close to unity within the nucleation patch.

The slip rate evolution obtained in regime (III) corresponds to
the solution of Rubin & Ampuero (2005), for small a/b ratio. Here
nucleation consists in the acceleration of slip on a single VW patch,
which immediately leads to the rupture of the entire fault, the evo-
lution of slip rate is to the first order only controlled by the local
friction parameters a0 and bw. Since by definition a0/bw < α < 0.5,
the fixed length solution of Rubin & Ampuero (2005) for slip accel-
eration is obtained. The evolution of slip rate in the three remaining
regimes could also be interpreted in the framework developed by
Rubin & Ampuero (2005) and Ampuero & Rubin (2008) for VW
faults under constant frictional conditions. In Appendix D3, it is
shown that slip rate and state variable evolution could be decom-
posed into a large scale background contribution of typical wave-
length Ln plus a fluctuation of typical length scale λ� Ln. To the first
order, the background large scale evolution is obtained by applying
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Figure 5. General nucleation characteristics in the four possible regimes. (a) Maximum background slip rate evolution. The normalization factor ξn for the
horizontal axis is defined in the legend for each regime. ξh and ξw correspond to the homogenized and local normalization factors for nucleation duration
defined in eqs (C5) and (C4). Black dashed line indicates the inverse time to failure asymptote. (b) Critical nucleation length. Coloured circles are the numerical
estimates. Error bars indicate the variability of Lc for one simulation. Black dashed lines correspond to theoretical approximations. L∗ is defined in the legend
for each nucleation regime, from the homogenized or local length scales Lh and Lw defined in eqs (C2) and (C1). The four points outlined by the red dashed
ellipse correspond to failure of the algorithm to detect Lc from the numerical solutions. (c) Seismicity increase before the main-shock occurrence in regime
(IV). nf is the cumulative number of foreshocks, nmax

f the total number of foreshocks in the sequence. tf is the onset time of the main-shock. T1 and t1 refer to
the first foreshock of the sequence. Coloured lines are the numerical results. Each symbol corresponds to a single foreshock. Only sequences with more than
10 foreshocks are represented. Heavy black dashed lines indicate two different approximations of the increase of seismic activity.

a λ moving average to the solution. After separating the two spa-
tial scales, the different contributions could be isolated. It is then
shown that the large scale background evolution obeys homoge-
nized equations involving only the ratio of averaged parameters
α (eq. D41). Neglecting the fluctuations of v and θ , the fault is
therefore equivalent to an effective fault characterized by constant
frictional properties.

These theoretical results are supported by numerical simulations.
In particular by the shape of the averaged v, θ and 
 profiles shown
in Fig. 4, which are qualitatively similar to what is expected for
constant friction faults (Rubin & Ampuero 2005). It is further sup-
ported by the rescaled evolution of maximum slip rate represented
in Fig. 5(a): as expected for nucleation under constant frictional
conditions, maximum background slip rate blows up as the inverse
time to failure. Furthermore, the timescale for this evolution dur-
ing regimes (I), (II) and (IV) is to the first order well explained
by the homogenized nucleation duration, that is, by the asymptotic
values proposed by Rubin & Ampuero (2005) assuming a0 and b0

as the relevant parameters. Similarly, the nucleation duration under

regime (III) is reasonably approximated by the asymptotic values
of Rubin & Ampuero (2005) assuming a0 and bw as the relevant
parameters. The last evidence that nucleation under heterogeneous
frictional conditions could be derived (at least to some extent) from
the work by Rubin & Ampuero (2005) is provided by the nucleation
length, as shown below.

One important feature is that the evolution of background slip rate
under regime (IV) seems to be unaffected by foreshock occurrence,
at least to the first order in ε = λ/Ln. Foreshocks are therefore by-
products of the acceleration of background slip rate that could be
regarded as an aseismic slip acceleration. However, foreshocks have
important consequences concerning the transition to quasi-dynamic
rupture.

The end of the nucleation process could be characterized by
the critical nucleation length Lc marking the transition to quasi-
dynamic rupture. For all the simulations reported here, the nucle-
ation length has been estimated as half the distance between peaks
of shear stresses delimiting the nucleation patch at the onset of
quasi-dynamic rupture (Fig. D1b). For a given set of parameters, Lc
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has been estimated for at least three different main-shocks. Results
are presented in Fig. 5(b). As shown in Appendix D4, the nucle-
ation length for regimes (I), (II) and (III) could be derived from
the nucleation length under homogeneous frictional conditions. For
regime (III) the half nucleation length is controlled by the local
VW friction parameters, and it is well approximated by the local
nucleation length Lw (eq. C1, Fig. 5b). Since no foreshocks occur
in regimes (I) and (II), the whole nucleation process is governed by
the averaged parameters, and the homogenized nucleation length
Lh defined in eq. (C2) provides a good approximation of the nu-
cleation half-length. As shown in Fig. 5(b), this latter approach
fails to explain nucleation lengths obtained in regime (IV), and this
comes from the significant contribution of foreshocks that cannot
be neglected. To account for the foreshock effect, it is here again
useful to refer to linear fracture mechanics. In this framework, the
nucleation length Lc is the nucleation crack half-length leading to a
high enough stress intensity factor ahead of the crack. It is shown in
Appendix D4 that the critical stress intensity factor is reached for
Lc given by eq. (D59) as

Lc = L∗
(

1 + 3
√

cλ̃ + 9

4
cλ̃

)
, (5)

where L∗ = μdc(1 − f)α/πb0σ (1 − α)2, c = (1 − α + fα)2/

π (1 − f)α and λ̃ = λb0σ/μdc. Note that the critical nucleation
length increases with λ. Eq. (D59) provides a good approximation
for the nucleation length obtained in regime (IV) (Fig. 5b). As λ

goes to zero, the estimate of eq. (5) gets closer to Lh, and provides an
upper bound for the critical nucleation length under regime (II). This
is because in both regimes (II) and (IV), the nucleation occurs as an
expanding crack characterized by steady state frictional conditions
within the crack (Fig. 4). Stress intensity factors expressions (D16)
and (D20) therefore hold for regime (II). Note that the nucleation
length given by eq. (5) converges to L∗ as λ vanishes. From eq. (3),
L∗ could be expressed as

L∗ = Lb0

π

1 − �b/b0

(1 − α)2
, (6)

which converges to the L∞ proposed by Rubin & Ampuero (2005)
for the constant a and b fault as the b perturbation �b/b0 vanishes.

The space-time pattern of foreshocks in regime (IV) (Fig. 3d) is
characterized by two important features. First, several VW patches
repeatedly rupture before the main-shock. They could be consid-
ered as repeating events occurring fairly regularly in log time to
failure. The cumulative number of ruptures on a particular VW
patch increases as −ln (tf − t). More generally, the foreshock rate
accelerates before the main-shock, as the nucleation patch expands.
From Fig. 3(d), let assume that each time the nucleation patch size
increases by 2λ, the number of additional foreshocks is proportional
to l/λ + 1. The cumulative number of foreshocks nf on the fault
therefore grows as nf ∼ (l/λ)2. Since l increases approximately lin-
early with log time to failure, nf increases as ln 2(tf − t). The increase
of seismicity before the main-shock is represented in Fig. 5(c) for
the largest foreshock sequences in regime (IV). The numerical re-
sults suggest that n f /nmax

f grows approximately as Aln 2(tf − t), A
being a constant between 0.004 and 0.03. However, this simple anal-
ysis does not allow to capture the f, α and possibly λ dependence
of A. This requires to provide a closed form expression for l since
n f /nmax

f � (l/ lmax)2, lmax being the maximum half-length of the nu-
cleation patch. The closed form expression of l in turn depends on
the stress distribution ahead of the nucleation patch. This problem
is beyond the scope of this study. Note the ln 2(tf − t) dependence
of the cumulative number of foreshocks implies a seismicity rate

increasing as −ln (tf − t)/(tf − t), which is approximately similar to
a 1/(tf − t) growth long enough before the main-shock.

4 D I S C U S S I O N

The nucleation of large earthquakes on a heterogeneous fault re-
produces many features observed for natural and laboratory earth-
quakes: aseismic slip acceleration in the hypocentre region, possible
but not systematic occurrence of foreshocks in the same area. As
illustrated in Fig. 3(d), the foreshock sequences produced in regime
(IV) are characterized by a progressive along strike expansion that
is often observed before natural earthquakes (Kato et al. 2012;
Kato & Nakagawa 2014). The acceleration of repeating events has
furthermore already been reported prior to Izmit earthquake (Bou-
chon et al. 2011), and the 1/(tf − t) acceleration of seismicity
rate is a common features of many foreshock sequences (Papaza-
chos 1973; Kagan & Knopoff 1978; Jones & Molnar 1979; Bouchon
et al. 2013).

As noted in Fig. 2(d), some foreshock sequences in regime (IV) do
not lead to a main-shock, in particular when α is close to one and ρw

(or λ) is large enough. Since the nucleation length increases with λ in
regime (IV), this could be interpreted as situations where the critical
nucleation length is larger than the whole fault segment considered
here. Such sequences could be regarded as seismic swarms dying
when the tectonic stress is released on the fault, or continuous
background seismic activity. Frictional heterogeneity on a finite
fault therefore allows to explain either seismic swarms or large
earthquakes with or without precursory foreshock activity.

From the simulations presented here, foreshock sequences are
strongly coupled to the aseismic slip, and it was not possible to
generate foreshock cascades with negligible aseismic deformation
leading to a main-shock, as suggested by other studies (Jones &
Molnar 1979; Helmstetter & Sornette 2003). However the possi-
bility of such processes is not precluded, as other types of friction
laws, boundary conditions, and heterogeneity have not been consid-
ered. More than that, the foreshock sequences seem to be driven by
the increase of background aseismic slip rate. In the developments
presented in Appendix D, it is shown that foreshocks generate very
localized perturbations of the slip rate, of the state, and of the stress,
which are negligible compared to the perturbations generated by
the large scale increase in background slip rate. On the other hand,
the dynamics of one particular event is not only controlled by lo-
cal friction parameters, but more importantly by local values of
the background slip rate (eq. D53). Foreshocks could therefore be
considered as by-products of a large scale nucleation process, as
suggested by Ohnaka (1992); Dodge et al. (1996); Bouchon et al.
(2011) and Bouchon et al. (2013).

The developments presented so far show that many features of
nucleation could be understood with an effective friction law de-
fined from the spatial average of the local friction parameters. This
conclusion holds in the case of a small-scale heterogeneity, at least
smaller than the minimum local nucleation length. The theoreti-
cal framework developed for constant rate-and-state friction faults
(Dieterich 1992; Rubin & Ampuero 2005; Ampuero & Rubin 2008)
could be used for heterogeneous faults, in particular to define effec-
tive critical nucleation lengths and effective nucleation durations.
The existence of effective rate and-state parameters extends the con-
cept of effective slip-weakening friction defined by Campillo et al.
(2001) and Voisin et al. (2002). In particular when the rate-and-state
fault is far above steady state, rate-and-state friction almost reduces
to a slip-weakening friction law in which the weakening rate ∂f/∂δ
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is given by −b/dc, f being the friction coefficient, δ the fault slip,
and b, dc rate and-state parameters. The effective b defined here as
the spatial average of b leads to a single effective weakening rate,
which is different from the two successive effective weakening rates
proposed by Campillo et al. (2001). More investigation is needed
to determine whether the effective weakening of rate-and-state and
slip-weakening merge at some point.

When frictional properties vary over a scale λ larger than the
minimum nucleation length, nucleation is not only controlled by
an effective friction law, but also by an Irwin’s criterion involving
λ. More generally, such a fracture mechanics criterion controls the
transition to quasi-dynamic rupture at least in regimes (II), (III) and
(IV). Accordingly, the nucleation crack expansion in regime (IV)
occurs with K < Kc, that is with an energy release rate smaller than
critical, and could be seen as a subcritical crack growth (Rice 1978).
The expansion of the crack is here driven by localized destabiliza-
tion of self-accelerating VW patches at the edges of the crack. On
average, the expansion is controlled by effective friction. This could
be compared to the subcritical mode I crack growth on a hetero-
geneous interface analysed by Lengliné et al. (2011) and Lengliné
et al. (2012). The expansion of the crack was in their experiment
controlled by effective fracture energy. This is an indication that
effective fracture energy could be defined from effective friction, as
primarily suggested by Campillo et al. (2001). This point will be
further discussed later.

Although only periodic frictional heterogeneities have been con-
sidered, the conclusion could be extended to non-periodic hetero-
geneities. Heterogeneity is indeed suspected to exist at all scales on
natural faults (Power et al. 1987; Renard et al. 2006). Furthermore,
foreshock sequences are usually characterized by a Gutenberg-
Richter distribution, which suggests a fractal distribution of het-
erogeneity. However, the developments leading to an effective law
for the background slip rate do not use at any time the periodic-
ity assumption. Let consider a fault made of a succession of small
segments, the ith subfault having a length λi and a critical nucle-
ation length Lwi. If the maximum value of ρw = λi/4Lwi is smaller
than critical, the fault will not produce any foreshocks, and the slip
rate increase will be controlled by the effective friction law, as in
regimes (I) and (II). If one of the subpatches is larger than critical,
foreshocks may occur during nucleation, but as long as the typi-
cal length scale over which the background nucleation proceeds is
larger than the maximum subpatch length, foreshocks have a neg-
ligible influence. As in regimes (I) and (II), the effective friction
law here controls the nucleation. This conclusion supports the idea
that homogenization may explain (at least to the first order) the
behaviour of faults characterized by a complex non-periodic het-
erogeneity (Latour et al. 2011). However, as mentioned by Latour
et al. (2011), the homogenization procedure could become a diffi-
cult task in such situations. In the rate-and-state framework studied
here, difficulties could arise in defining the critical nucleation length
for regime (IV), and the transition from regime (III) to regime (IV).
This is because the expression for the stress intensity factor K and
the critical stress intensity factor Kc developed here depend on the
stress change distribution within the nucleation crack, which will
no longer be periodic. This analysis requires more attention.

This study has focused on the ageing version of the rate-and-
state friction, and the slip version has not been considered so far.
This could considerably change the conclusions, precisely because
nucleation under slip law is characterized by extreme localization
(Ampuero & Rubin 2008). In some cases, nucleation consists in
very narrow slip pulses travelling through the fault plane. In other
words, the typical nucleation patch size Ln will be very small. Ho-

mogenization would be theoretically possible for very small scale
heterogeneity λ � Ln. If homogenization is not possible, nucleation
would proceed as sequences of foreshocks which would have a dom-
inant effect in the process. Depending on the way foreshocks and
accelerated slow slip interact, the foreshock production rate may
differ from the acceleration expected with the ageing law. If the
slip law generates localization instead of crack expansion, a smaller
foreshock productivity is expected.

Similarly, more investigations are needed to understand nucle-
ation under heterogeneities in the a parameter and more impor-
tantly in the critical slip dc, which influences greatly the character-
istic length scales. Rate-and-state faults characterized by heteroge-
neous dc may generate large ruptures preceded by a sequence of
accelerated foreshock activity (Hillers et al. 2006). Hillers et al.
(2006) also noted that some characteristics of the foreshock activity
(magnitude–frequency distribution, total number of foreshocks) are
controlled by the typical wavelength of the dc heterogeneity. These
features are similar to what is obtained here under regime (IV). It
would be worth extending Hillers et al. (2006) study to investigate
whether the nucleation of large events are controlled by an effective
dc parameter. Defining an effective dc is of critical importance for
a more general effective friction theory, because it is a common
parameter of different friction laws (rate-and-state, slip weakening)
invoked in earthquake mechanics theories. It plays an important
role in nucleation under these different formulations (Rubin & Am-
puero 2005; Ampuero & Rubin 2008; Campillo & Ionescu 1997;
Uenishi & Rice 2003). More generally, dc is proportional to the
fracture energy Gc that controls many earthquake processes from
nucleation to dynamic rupture propagation. Up-scaling friction pa-
rameters such as dc would be a first step in up-scaling fracture
energy.

In the framework of heterogeneous slip-weakening friction law,
an effective dc could be derived (Campillo et al. 2001; Voisin
et al. 2002). An important result of Campillo et al. (2001) is that
even if dc is constant along the fault, for strong heterogeneities in
static friction coefficient, the effective dc is larger than the local
(constant) dc. The effective dc is therefore not always a simple func-
tional of the local dc distribution, but involves the distribution of the
other frictional parameters along the fault. A similar situation arises
in the rate-and-state framework as this is suggested by the critical
nucleation length in the presence of b heterogeneities (Fig. 5b). For
homogeneous rate-and-state faults, the critical nucleation length is
proportional to dc (Dieterich 1992; Rubin & Ampuero 2005; Am-
puero & Rubin 2008). Although an effective dc has not been derived
in this study, an effective nucleation length Lhet

c has been obtained
for the different nucleation regimes in Appendix D4. Let Lhom

c be
the critical nucleation half-length under constant friction conditions
a0, b0 and dc. From Appendix C, Lhom

c (dc) = μdcφ(α)/b0σ , where
φ is a function of the ratio α = a0/b0. An effective parameter deff

c for
the heterogeneous fault could then be defined as Lhom

c (deff
c ) = Lhet

c .
From the results of Appendix D4 for Lhet

c , one gets:

deff
c =

⎧⎪⎪⎨
⎪⎪⎩

dc for regimes (I), (II)
and (III)

(1 − f )α

π (1 − α)2

[
1 + 3

√
cλ̃ + 9

4
cλ̃

]
dc for regime (IV).

(7)

Note that under regime (III) there is no proper homogenized nu-
cleation length since nucleation is entirely governed by local VW
parameters. dc is therefore the relevant large scale critical slip. If
deff

c is equal to the local dc under regimes (I), (II) and (III), it may
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be drastically larger than dc under regime (IV). This reflects that
multiple foreshocks are needed to break all the strengthening barri-
ers along the fault and promote large scale slip. The weakening of
the entire fault thus occurs when the VW patches have slept much
more than the local dc (at least the number of successive foreshocks
on the patch times dc), just as in the strong heterogeneous case of
Campillo et al. (2001). Eq. (7) could further be used to define an
effective fracture energy density Geff

c from the definition (D18) one
gets Geff

c proportional to b0σdeff
c . As in the strong heterogeneity

case discussed by Campillo et al. (2001), the fracture energy under
regime (IV) may be much larger on a large scale heterogeneous fault
than on a small-scale homogeneous fault. This may explain the dis-
crepancy between dc (and Gc) estimates for natural earthquakes and
for laboratory samples (Ohnaka & Shen 1999; Peyrat et al. 2001).

In order to make comparison with nucleation of natural earth-
quakes, the results presented here need to be extended to a 2-D
heterogeneous fault embedded in a 3-D medium. In particular, this
would allow to derive more realistic foreshock production rates. The
difficulty of extending to 3-D essentially comes from the elastic in-
teractions that become more complex, mixing in-plane and antiplane
modes (Latour et al. 2011). However, under the quasi-dynamic as-
sumption, this complexity will be limited, and would only appear
in the static interaction term, which would still be a convolution
product of the slip gradients (Andrews 1974). The derivations of
Appendix D may therefore be generalized to the 2-D fault.

5 C O N C LU S I O N

This study has demonstrated how frictional heterogeneity could
explain in a simple framework the principal features of large earth-
quakes nucleation process. In particular, it suggests a physical in-
terpretation of why foreshock sequences are not systematically ob-
served, and why microseismic swarm sometimes do not develop to a
large event. Under heterogeneous conditions, the aseismic slip rate
increase, the growth of foreshock activity and the critical nucleation
length are controlled by an effective rate-and-state friction law and
a simple fracture criterion. One of the most important implications
is that rate-and-state friction could be up scaled, so that frictional
heterogeneity could be studied through effective media approaches.
This has been demonstrated for nucleation only, but may have great
implications in the understanding of other processes such as dy-
namic rupture or aseismic transients when heterogeneous friction
conditions prevail on faults.
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A P P E N D I X A : N O TAT I O N S

Consider a scalar function f(x, t). In the following, H [ f ] is the
Hilbert transform of the function f, that is,

H [ f ] (x, t) = 1

π

∫ +∞

−∞

f (s, t)

x − s
ds. (A1)

In the following, f′ and ḟ indicate partial derivatives with respect
to the first and the second variables of f, that is here ∂/∂x and ∂/∂t.
In case of a variable change, for a scalar function f(y(x), s(t)), I will
note f′ = ∂f/∂y and ḟ = ∂ f/∂s. The moving λ-average with respect

to the first variable f
λ
(x, t) is defined by

f
λ
(x, t) = 1

λ

∫ x+λ/2

x−λ/2
f (x ′, t)dx ′. (A2)

Let f be a scalar function of the variable x and ε a very small positive
number compared to the typical wavelength of f variations. Let g be
a scalar function of the variable y = x/ε, then,

f g
ε
(x, y) = 1

ε

∫ x+ε/2

x−ε/2
f (x ′)g

(
x ′

ε

)
dx ′

� f (x)
∫ y+1/2

y−1/2
g(y′)dy′ = f (x)g(y), (A3)

where for simplicity g corresponds to g1.

A P P E N D I X B : G OV E R N I N G E Q UAT I O N S

Consider the planar 1-D fault depicted in Fig. 1(a) under an-
tiplane deformation. The slip discontinuity δ(x, t) = u(x, 0+, t) −
u(x, 0−, t) (u being the displacement in the z direction) vanishes for
|x| > L at all times. The evolution of δ is governed by the quasi-static
stress balance:

τ f (x, t) = τb(x, t) + τel(x, t) + τrad(x, t), (B1)

where τ f is the frictional stress, τ b the remote loading, that is,
the stress that would act on the fault if δ = 0, τ el the static stress
interaction, and τ rad the local dynamic stress change associated with
shear wave radiation. The elastic stress τ el(x, t) is given by

τel(x, t) = −μ

2
H

[
δ′] (x, t), (B2)

where μ is the shear modulus. With v(x, t) = δ̇(x, t), the rate-and-
state frictional stress τ f(x, t) in |x| < L is given by

τ f (x, t) = f0σ + a(x)σ ln
v(x, t)

v∗ + b(x)σ ln
θ (x, t)v∗

dc
, (B3)

where v is the slip rate and θ the state variable. f0, σ , v∗ and dc

are constant friction coefficient, normal stress, typical slip rate and
critical slip for state evolution respectively. a(x) and b(x) are the
rate-and-state friction parameters that might vary along the fault.
The evolution of the state variable is given by the ageing law:

θ̇ (x, t) = 1 − vθ

dc
(x, t). (B4)

At steady state (θ̇ = 0), the frictional stress τ ss is given by

τss(x, t) = f0σ + [a(x) − b(x)] σ ln
v(x, t)

v∗ . (B5)

τ ss is either a decreasing (if a − b < 0) or increasing (if a − b > 0)
function of slip rate v, which correspond to VW and VS behaviours,
respectively. The stress change associated with wave radiation is
approximately given by

τrad(x, t) = −ηv(x, t), (B6)

where η = μ/2cs is the radiation damping introduced by Rice
(1993), cs being the shear wave speed of the elastic medium. Taking
the time derivative of the stress balance (B1), and making use of
(B2), (B3), (B4) and (B6), I get⎧⎪⎪⎨
⎪⎪⎩

aσ
v̇

v
+ bσ

θ̇

θ
= τ̇b − μ

2
H

[
v′] − ηv̇

θ̇ = 1 − vθ

dc
.

(B7)

Assuming a0 and b0 are the spatial averages of a(x) and b(x), I next
define the following non-dimensional quantities:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t̃ = tv∗

dc
, (x̃, L̃) = (x, L)b0σ

μdc

ã(x̃) = a(x)

a0
, b̃(x̃) = b(x)

b0

ṽ(x̃, t̃) = v(x, t)

v∗ , θ̃ (x̃, t̃) = θ (x, t)v∗

dc
, τ̃b(x̃, t̃) = τb(x, t)

b0σ
,

(B8)

where the tildes indicate non-dimensional variables. Typical values
of the different parameters are reported and commented in Table B1.
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Table B1. List of typical mechanical parameters, and computational parameters.

Physical Parameter Value Comment

f0 0.6 Typical friction coefficient (Marone 1998)
v∗ 10−9 m s−1 Typical relative plate motion or creep rate on tectonic faults
dc 10−2 mm In the laboratory (Marone 1998)
b0 5 × 10−3 In the laboratory (Marone 1998)
μ 30 GPa Typical for rocks
σ 100 MPa Approximate lithostatic stress at 3 km depth
cs 3 km s−1 Typical shear wave speed for rocks
τ̇b 5.10−4 Pa s−1 Typical tectonic stressing rate on faults

Computational parameters Value Comment

n 213 Number of computational points
h 0.03 m Computational cell size
L 245.73 m Fault length (Magnitude ∼3 event)

Table B2. List of characteristic scales and non-dimensional parameters.

Characteristic Scales Value Comment

Lb0 = μdc/b0σ 0.6 m Typical length used for distance normalization
Ln see Figs 3(d) and D3(a) Typical nucleation patch size
Tn see Fig. 3(d) Typical log duration of the nucleation process
Lw/Lb0 eq. (C1) Local critical nucleation length
Lh/Lb0 eq. (C2) homogenized critical nucleation length
twv∗/dc eq. (C1) Local nucleation duration
thv∗/dc eq. (C2) homogenized nucleation duration

Non-dimensional parameters value comment
˙̃τ b = τ̇bdc/b0σv∗ 10−5 Normalized far-field stressing rate
β = μv∗/2csb0σ 10−8 Normalized damping parameter
ṽd = vd/v∗ 107 Normalized radiative slip rate
λ/Lb0 from 0.4 to 51.2 Normalized wavelength of heterogeneity
α = a0/b0 from 0.2 to 0.9 Ratio of averaged frictional parameters
f from 0.1 to 0.9 Amplitude factor for the b parameter heterogeneity

The dynamical system (B7) becomes (after removing the tildes for
simplicity):⎧⎪⎪⎨
⎪⎪⎩

αa
v̇

v
+ b

θ̇

θ
= τ̇b − 1

2
H

[
v′] − βv̇

θ̇

θ
= 1

θ
− v,

(B9)

where α = a0/b0, β = ηv∗/b0σ . Considering the typical values of
Table B1, I will assume in the whole study β = 10−8 and τ̇b = 10−5.
Note that ageing law (B4) has been divided by θ in order to simplify
further developments.

From a set of parameters α, a(x), b(x), and the definition of initial
conditions v(x, 0) and θ (x, 0), the system (B9) is solved numerically
using a standard finite difference approach (fourth-order Runge–
Kutta algorithm with adaptive time stepping). This requires the
evaluation of the Hilbert transform of the slip rate gradient at each
time step, which is performed with the method proposed by Cochard
& Rice (1997) for finite faults. This also requires the discretization
of the fault segment in a set of n equal computational cells of size
h. In order to ensure continuity, I choose h to be much smaller than
the minimum size of a process zone on the fault segment. From
Rubin & Ampuero (2005) and Ampuero & Rubin (2008), this con-
dition is respected if h < 0.1min (Lb), Lb = μdc/bσ . All the results
presented here were obtained with hb0σ/μdc = 0.05, which is suf-
ficient to ensure continuity. The computational parameters, and the
range of non-dimensional parameters studied here are summarized
in Tables B1 and B2.

In this study an earthquake is defined as a slip event on the
fault occurring with a high enough slip rate, that is, larger than

the dynamical slip rate vd. Following Rubin & Ampuero (2005), vd

could be interpreted as the minimum slip rate where wave radiation
dominates over the direct effect of the friction law, that is when τ̇rad

dominates over the aσ v̇/v term of τ̇ f . From eqs (B3) and (B6),
vd/v∗ � α/β. With the present choice of parameters, this value lies
between 107 and 108. I will assume in my applications vd/v∗ = 107,
which corresponds to vd � 0.01 m s−1 considering the value of v∗

provided in Table B1.

A P P E N D I X C : N U C L E AT I O N O N A
H O M O G E N E O U S FAU LT, M A I N
F E AT U R E S

In this section, all the variables are non-dimensional variables de-
fined from the rules (B8). Earlier work by Dieterich (1992), Rubin
& Ampuero (2005), Ampuero & Rubin (2008) Viesca (2016a) and
Viesca (2016b) has considered nucleation of slip instabilities under
constant frictional properties (i.e. with constants a(x) = 1, b(x) = 1).
In general, the nucleation of a slip instability consists in a progres-
sive acceleration of slip rate as inverse time to failure, either on a
fault patch of fixed length (for small α = a0/b0), or as an expanding
crack (for α close to 1). When a radiative slip rate (vd) is reached
at some point of the fault, the typical size of the accelerating patch
(i.e. nucleation length) could be expressed as a simple function of
the parameters a0 and b0. Similarly, Rubin & Ampuero (2005), Am-
puero & Rubin (2008) showed how nucleation duration could scale
with a0 and b0.
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Figure C1. Critical nucleation length for a constant a and b fault, assuming different fault lengths and different remote stressing rates. Numerical estimates
are represented with coloured symbols. The dotted black line corresponds to the fixed length solution of Rubin & Ampuero (2005). The dashed-dotted line
corresponds to the approximation proposed by Rubin & Ampuero (2005) for α close to 1. The dashed line is the Ruina (1983) critical length estimate. The
solid blue line labelled L0.1(α) is the linear interpolation of the numerical estimates obtained with Lbσ/μdc = 409.6 and τ̇bdc/bσv∗ = 10−5 (blue dots).

The fault geometry considered here (Fig. 1a) is different from
the infinite periodic fault assumed by Dieterich (1992), Rubin &
Ampuero (2005) and Ampuero & Rubin (2008), and from the in-
finite fault of Viesca (2016a) and Viesca (2016b). Nucleation on a
finite fault therefore starts with different initial conditions than what
was assumed in these previous studies. Since nucleation is sensitive
to initial conditions (at least for a/b close to one) (Rubin & Am-
puero 2005), nucleation characteristics (duration, critical length)
may be different in the fault model considered here. I conducted
a few tests with the fault model depicted in Fig. 1(a), assuming
a(x) = 1 and b(x) = 1. For different values of α, different fault
sizes L and different remote stressing rates τ̇b, I estimated first the
nucleation duration, then the critical nucleation half-length L0 as
half the distance between peak shear stresses when slip rate reaches
the dynamical threshold vd. In all cases, the nucleation duration was
consistent with Rubin & Ampuero (2005) approximation. Further-
more, for α < 0.5, the constant length of Rubin & Ampuero (2005)
is a good approximation to L0. For larger α, L0 values reported
in Fig. C1 neither follow the (1 − α)−2 asymptote proposed by
Rubin & Ampuero (2005), nor the (1 − α)−1 one expected from Ru-
ina (1983). In the following, I will therefore consider the numerical
estimate L0.1(α) as the relevant reference critical nucleation half-
length under homogeneous frictional conditions. The functional
L0.1(α) is a linear interpolation (the blue solid line in Fig. C1) of the
L0 values obtained with Lbσ/μdc = 409.6 and τ̇bdc/bσv∗ = 10−5.
L0.1 could be regarded as the critical nucleation half-length expected
for the homogeneous equivalent of the heterogeneous fault studied
here, when α > 0.5.

These results about nucleation length under constant a and b
are used here to characterize the behaviour of a single VW patch.
Let Lw be the typical nucleation length of a VW patch. In the
following I will use the Rubin & Ampuero (2005) approximation
for Lw when α < 0.5, and for α close to one Lw will be evaluated

numerically by L0.1. Based on this rule, the nucleation length Lw for
velocity weakening patches defined by bw = b0 + �b depends on
a0/bw = α/(2 − α + fα) as

Lw =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.33

2 − α + f α
if

α

2 − α + f α
< 0.5,

that is, α <
2

3 − f

L0.1

(
α

2 − α + f α

)
if α >

2

3 − f
.

(C1)

Recall that Lw and L0.1 are normalized lengths as defined in (B8).
As shown later, I will also consider the so called homogenized
nucleation length Lh, which is simply Lw defined with a0 and b0. Lh

can be obtained from (C1) substituting bw = b0(2 − α + fα) by b0.
I have

Lh =
{

1.33 if α < 0.5

L0.1 (α) if α > 0.5.
(C2)

Here again Lh is normalized according to (B8). The second impor-
tant feature of nucleation when a and b are constant is the slip rate
acceleration as the inverse time to failure. Rubin & Ampuero (2005)
and Ampuero & Rubin (2008) show that maximum slip rate vmax

during nucleation has the form:

vmax = v0

(
1 − t

tn

)−1

, (C3)

where v0 is the initial normalized slip rate on the fault, t is the
normalized time, and tn the duration of slip rate acceleration. A tn

can be defined locally for a velocity weakening patch. I call it tw.
From Rubin & Ampuero (2005) and Ampuero & Rubin (2008) tw
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depends on α, in a similar manner than Lw does. I have

tw = 1

v0
ξw, ξw =

⎧⎪⎪⎨
⎪⎪⎩

α

0.3781(2 − α + f α)
if α <

2

3 − f

2

π

(
1 − α

2 − α + f α

)−1

if α >
2

3 − f
,

(C4)

where the condition on α indicates whether a0/bw is larger or smaller
than 0.5. In the following, I will consider the so called homogenized
duration th as the value of tw defined with a0 and b0. As for Lh, I
make use of eq. (C4) to get

th = 1

v0
ξh, ξh =

⎧⎪⎪⎨
⎪⎪⎩

α

0.3781
if α < 0.5

2

π

1

(1 − α)
if α > 0.5.

(C5)

A P P E N D I X D : N U C L E AT I O N O N A
H E T E RO G E N E O U S FAU LT, M A I N
F E AT U R E S

D1 Stability of the nucleation crack, transition to dynamic
rupture

As shown in Figs 2(b) and D1(a), the nucleation phase consists
in the growing of a crack, with slip profiles vanishing outside a
fault segment of half-length l. The stress distribution inside the
crack is at steady state: it is λ periodic and oscillates between
velocity strengthening and velocity weakening steady-state values.
The transition to quasi-dynamic rupture could be interpreted as the
crossing of a fracture criterion leading to rapid expansion of the
nucleation crack. Let assume that the fracture criterion is reached
when the stress intensity factor K of the crack exceeds a critical
value Kc [Irwin’s criterion (Lawn 1993)].

In the following, I assume that the nucleation consists in the
approximate finite crack � depicted in Fig. D1(c). � has a half-
length l. Since I am interested in the crack behaviour at the transition
to quasi-dynamic rupture, I will assume that slip rate inside the crack
is approximately given by vd. However, this choice is not of primarily
importance as shown below. From the stress profile in Fig. D1(b), I
assume a shear stress drop �τ within � of the form:

�τ (x) = [b(x) − a0] σ ln vd/v
∗, for |x | < l. (D1)

The distribution b(x) is given by eqs (1) and (2). From Rice (1979),
the corresponding stress intensity factor K at the right tip of the
crack (x = l) is

K = 1√
πl

∫ +l

−l

√
l + x

l − x
�τ (x)dx . (D2)

Making use of eqs (D1), (1) and (D2), the stress intensity factor K
could be expressed as

K (z) = K ∗

√
λ̃

π

[
(1 − α)π

√
z + �b

b0

F(z)√
z

]
, (D3)

where K ∗ = √
μb0σdc ln vd/v

∗, z = l/λ > 0, λ̃ = λb0σ/μdc. The
functional F is given by

F(z) =
∫ +z

−z
φ̃(u)g(z, u)du, (D4)

where u = x/λ, φ̃(u) = φ(x) and the weight function g(z, u) =√
z + u/

√
z − u. The functional F could be evaluated numerically.

However, I will use two different approximations of this integral:
first when the crack involves only one velocity weakening patch
and its two immediate velocity strengthening neighbours (i.e. at
z = z0 = 3/4), then when the crack is large enough (i.e. z > >1),
and its tip is situated at the end of a velocity strengthening patch
(i.e. if z = zsw = 3/4 + m, m being an integer).

At z = z0, F could be rewritten as:

F(z0) = −
∫ −1/4

−z0

g(z0, u)du +
∫ +1/4

−1/4
g(z0, u)du

−
∫ z0

1/4
g(z0, u)du. (D5)

These two integrals could be written explicitly so that

F(z0) = 3 arctan
1

2
√

2
− 3

4
π � 1 − 3π

4
, (D6)

which is negative. The stress intensity factor K0 at z0 is therefore
given by

K0 = K ∗

√
λ̃

π

[
(1 − α)π

√
3

4
− �b

b0
c0

]
, (D7)

where c0 = −2F(z0)/
√

3 � √
3π/2 − 2/

√
3.

At z = zsw, F could be rewritten as:

F(zsw) =
n∑

i=1

(∫ ui +1/2

ui −1/2
φ̃(u)g(zsw, u)du

)
−

∫ zsw

zsw−1/2
g(zsw, u)du

(D8)

=
n∑

i=1

(∫ ui +1/2

ui

g(zsw, u)du −
∫ ui

ui −1/2
g(zsw, u)du

)

−
∫ zsw

zsw−1/2
g(zsw, u)du, (D9)

where ui = i − 1/2 − zsw and n = 2m + 1. For zsw > >1, g(zsw, u)
could be approximated by its Taylor expansion around ui. Noting
s = u − ui, this leads to

g(zsw, u) = g(zsw, ui ) + sg′(zsw, ui ) + s2

2
g′′(zsw, ui ) + O(s3).

(D10)

Eliminating terms of order O(s3), I get

F(zsw) =
n∑

i=1

2g′(zsw, ui )

(∫ 1/2

0
sds

)
−

∫ zsw

zsw−1/2
g(zsw, u)du

(D11)

= 1

4

n∑
i=1

g′(zsw, ui ) −
∫ zsw

zsw−1/2
g(zsw, u)du. (D12)

The sum could be approximated by the integral of g′ from −zsw to
zsw − 1/2, which is equal to g(zsw, zsw − 1/2) − g(zsw, −zsw). Since
g(zsw, −zsw) = 0, I get

F(zsw) = 1

4

√
4zsw − 1 −

∫ zsw

zsw−1/2
g(zsw, u)du. (D13)

The last integral term could be approximated for zsw 
 1 as follows:∫ zsw

zsw−1/2
g(zsw, u)du �

√
2zsw

∫ zsw

zsw−1/2

du√
zsw − u

� 2
√

zsw.

(D14)
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Figure D1. Typical slip and shear stress during nucleation in regime (IV). (a) Nucleation slip profiles (δE − 1 is the cumulative slip at the end of main-shock
E − 1). One grey profile is represented at the onset and at the end of each foreshock. The black profile corresponds to the onset of main-shock E. (b) Shear
stress profile at the onset of main-shock E (corresponds to the black profile in panel a). (c) Approximate crack-like slip profile � at the onset of main-shock E
(approximation of the black profile in panel a). (d) Approximate shear stress change within the crack � (approximation of shear stress in panel b). In (c) and (d),
u is the along strike distance normalized by the wavelength of heterogeneity. u1, u2,..., un − 1 and un are coordinates used in the developments of Appendix D1.
VW and VS segments indicate velocity weakening and velocity strengthening segments respectively. l is the half-length of the approximate crack �. Results
in (a) and (b) were obtained with α = 0.9, f = 0.5 and λ = 6.4 (ρw = 1.04).

We end up with

F(zsw) � 1

4

√
4zsw − 1 − 2

√
zsw � −3

2

√
zsw. (D15)

The stress intensity factor Km at these strengthening to weakening
transitions is therefore approximated by

Km(zsw) = K ∗

√
λ̃

π

[
(1 − α)π

√
zsw − 3

2

�b

b0

]
. (D16)
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The critical stress intensity factor Kc could be defined from the
fracture energy Gc(l) at the crack tip:

Kc =
√

2μGc(l), (D17)

μ being the shear modulus of the elastic medium. As proposed by
Rubin & Ampuero (2005), the fracture energy could be approxi-
mated by

Gc(l) = b(l)σdc

2
(ln vd/v

∗)2
, (D18)

where b(l) is given by (1) at x = l. Using the same normalization as
for K, I end up with:

Kc(z) = K ∗
√

1 + �b

b0
φ̃(z). (D19)

At z = zsw, I have

Kc(zsw) = K ∗
√

1 − �b

b0
. (D20)

The numerical evaluation of the stress intensity factor K (eq. D3) is
represented in Fig. D2 along with its approximation Km (eq. D16),
and the critical stress intensity factor Kc (eq. D19). The global
increase in K with the crack length is modulated by a variation at the
typical length-scale λ: K is successively increasing then decreasing
as the crack tip goes through a velocity weakening and a velocity
strengthening region. In this framework, unstable crack growth (i.e.
quasi-dynamic rupture) occurs when z is large enough so that K
remains larger than Kc at the end of a velocity strengthening patch.
However, when K < Kc crack expansion may occur but at a slower
rate, because of local self-driven destabilizations on VW patches at
the edges of the crack. The inset of Fig. D2 illustrates the transition
from quasi-static crack growth to quasi-dynamic rupture.

D2 Condition for foreshock sequence

In this framework, a foreshock sequence occurs if K0 is smaller than
Kc(z0). From eqs (D7) and (D20), this condition becomes√

λ̃

π

[
(1 − α)π

√
3

2
− c0

�b

b0

]
<

√
1 − �b

b0
. (D21)

(D21) is always satisfied as long as the bracket term on the left-hand
side is negative, which occurs when α > αc given by

αc =
[

1 + f

(
3π

4
− 1

)]−1

, (D22)

where I have used the definition of �b/b0. αc is approximately 0.88,
0.6 and 0.45 for f = 0.1, f = 0.5 and f = 0.9. If α < αc, foreshock
sequence occur if λ̃ is smaller than the critical value λ̃c defined by

λ̃c = 3π

4

(1 − f )α

(1 − α/αc)2
. (D23)

From eqs (D23) and (C1), one can define the critical ρw parameter
ρc = λ̃c/4L̃w . This leads to

ρc = 3π

16

(1 − f )α

L̃w(α)(1 − α/αc)2
, (D24)

where L̃w(α) = Lw(α)b0σ/μdc.

D3 Background slip-rate evolution

This section is dedicated to the equations controlling the background
slip acceleration during nucleation under regimes (I), (II) and (IV),

that is when more than a single VW patch is involved. All the
quantities used in the remaining text are non-dimensional as defined
by eq. (B8). Let Ln be the typical nucleation patch size under such
conditions. By definition, Ln > λ. Let tn be an order of magnitude
of the nucleation duration. For t < tf, it is convenient to use the
substitution:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T = ln
(
t f − t

)
/Tn

X = x

Ln

ṽ(X, T ) = v(x, t), θ̃ (X, T ) = θ (x, t)

ã(X ) = a(x), b̃(X ) = b(x),

(D25)

where Tn = ln (tf − tn) is the logarithmic duration of the nucleation.
The system (B9) becomes (after removing the tildes for simplicity):⎧⎪⎪⎨
⎪⎪⎩

αa
v̇

v
+ b

θ̇

θ
= τ̇b + TneTn T

2Ln
H

[
v′] − βv̇

θ̇

θ

e−Tn T

Tn
= v − 1

θ
.

(D26)

D3.1 Regimes (I) and (II) (ρw < 0.5)

When ρw < 0.5, each VW patch is too small to rupture individually.
The nucleation of the main-shock therefore occurs without fore-
shocks. Since λ < <Ln I will consider λ as a small positive number
compared to the typical wavelength I am interested in, and I note
ε = λ/Ln. a and b are ε periodic, with aε(X ) = b

ε
(X ) = 1. In the

numerical solution (Figs 4 and D3a) v and 1/θ consist in a back-
ground evolution localized around the typical wavelength Ln and a
small amplitude fluctuation of typical wavelength λ. This suggest
the following decomposition:{

v(X, T ) = v0(X, T ) [1 + ϕ(Y, T )]

θ (X, T ) = θ0(X, T ) [1 + ϑ(Y, T )]−1 ,
(D27)

where Y = X/ε, v0 and θ 0 describe the background large scale evo-
lution, and ϕ and ϑ are the fluctuations of v and 1/θ . The frictional
parameters could be written as a(Y) and b(Y). The functional a(Y)
and b(Y) are periodic in Y, and verify:

a(Y ) = b(Y ) = 1. (D28)

As shown in Figs 4 and D3(a), when a moving average is applied to
v and 1/θ , the fluctuation of vε and 1/θ

ε
are reduced in amplitude.

From expressions (A3) and (D27), I have⎧⎪⎨
⎪⎩

vε(X, T ) = v0(X, T ) [1 + ϕ(Y, T )]

1

θ

ε

(X, T ) = 1

θ0
(X, T )

[
1 + ϑ(Y, T )

]
.

(D29)

Applying a second moving average leads to the same equations,
where the over-bar is replaced by a double overbar. However, the
amplitude of the fluctuation is not further reduced by this second
operation (Fig. D3a). To quantify this, I plot in Fig. D3(b) the
amplitudes A of the variable fluctuations as a function of ε. As
illustrated in Fig. D3(a), for a given fault segment of length ε centred
on X0, I define the local amplitude aϕ(X0, T) of the variable ϕ from
the extreme values v+ and v− of v on this segment, so that{

v+ = v0(X0, T )
[
1 + aϕ(X0, T )

]
v− = v0(X0, T )

[
1 − aϕ(X0, T )

]
,

(D30)
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Figure D2. Nucleation crack energy balance. Numerically computed stress intensity factor K (eq. D3) at the right tip of the approximate crack � depicted
in Fig. D1(c) (black solid line), critical stress intensity factor Kc (red solid line, eq. D19), and stress intensity factor approximation Km (black dashed line,
eq. D16). The inset shows the crack behaviour around the critical value Lc/λ, Lc being the critical half-length of �. K∗ is defined in Appendix D1. Blue line
indicates the position of a velocity weakening (VW) and velocity strengthening (VS) patch. Results were obtained for α = 0.9, f = 0.9, λb0σ/μdc = 3.2.

where I assume that v0 is approximately constant between X0 − ε/2
and X0 + ε/2. I therefore have

aϕ(X0, T ) = v+ − v−

v+ + v− (X0, T ). (D31)

Aϕ is then the average value of aϕ taken over the fault length and the
whole nucleation process. Similarly, I define Aϑ from the extremal
values of 1/θ taken on a collection of segments of length ε. Aϕ ,
Aϕ , Aϑ and A

ϑ
are defined in the same way from v, v, 1/θ and

1/θ . From Figs D3(b) and (c), while Aϕ ∼ Aϑ ∼ 1, I generally
have Aϕ, Aϑ , Aϕ, A

ϑ
< ε. I will therefore assume the following

property:

{
ϕ, ϑ = O(1)

ϕ, ϑ, ϕ, ϑ = O(ε).
(D32)

The second important property of ϕ and ϑ concerns their growth
rate. From expansion (D27), I have

⎧⎪⎪⎨
⎪⎪⎩

v̇

v
= v̇0

v0
+ ϕ̇

1 + ϕ

θ̇

θ
= θ̇0

θ0
+ ϑ̇

1 + ϑ
.

(D33)

Between instants T1 and T2, the ratio between the two right hand
terms of the first equation can be approximated by

|ϕ̇/(1 + ϕ)|
|v̇0/v0| (X, T1) ∼ rϕ(X, T1)

= ln {[1 + ϕ(X, T2)] / [1 + ϕ(X, T1)]}
ln [v0(X, T2)/v0(X, T1)]

. (D34)

To the order ε0, I have from property (D32) vε � v0, so that 1 + ϕ =
v/vε . The local growth rate ratio rϕ is therefore given by

rϕ(X, T1) = ln v(X, T2)vε(X, T1)/v(X, T1)vε(X, T2)

ln vε(X, T2)/vε(X, T1)
. (D35)

I then define Rϕ as the average value of rϕ over the fault length and
over T. Rϑ is defined similarly from 1/θ and 1/θ

ε
. Rϕ and Rϑ , when

plotted against ε in Figs D3(d) and (e), align approximately along
the R = ε line, so that I will assume in the following that:⎧⎪⎪⎨
⎪⎪⎩

v̇0

v0
,
θ̇0

θ0
= O(1)

ϕ̇

1 + ϕ
,

ϑ̇

1 + ϑ
= O(ε).

(D36)

Assuming (D27), the system (D26) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αa

[
v̇0

v0
+ ϕ̇

1 + ϕ

]
+ b

[
θ̇0

θ0
+ ϑ̇

1 + ϑ

]
= τ̇b + TneTn T

2Ln

{
H

[
v′

0

]
+H

[
v′

0ϕ
] + 1

ε
H

[
v0ϕ

′]} − βv̇0 − β(v̇0ϕ + v0ϕ̇)

θ̇0

θ0
+ ϑ̇

1 + ϑ
= TneTn T

[
v0(1 + ϕ) − (1 + ϑ)

θ0

]
.

(D37)

The use of property (D36) allows to remove O(ε) terms, and I end
up with⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αa
v̇0

v0
+ b

θ̇0

θ0
= τ̇b + TneTn T

2Ln

{
H

[
v′

0

] + H
[
v′

0ϕ
] + 1

ε
H

[
v0ϕ

′]}
− βv̇0 − β(v̇0ϕ + v0ϕ̇)

θ̇0

θ0
= TneTn T

[
v0(1 + ϕ) − (1 + ϑ)

θ0

]
.

(D38)
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Figure D3. Short wavelength fluctuation of slip rate and state variable during nucleation under regimes (I), (II) and (IV). (a) Typical slip rate and λ averaged
slip rate profiles. Results correspond to α = 0.9, f = 0.5 and ρw = 1.04. The inset indicates the behaviour over a period λ. (b,c) Statistics of fluctuation
amplitude for slip rate (b) and state variable (c). Symbols are colour-coded in the same manner as in panel (a). (d,e) Ratio between fluctuation growth rate and
background growth rate. Symbol type in panels (b)–(e) indicates the nucleation regime, blue dashed lines correspond to order ε quantities and horizontal red
lines to order 1 quantities. The precise definition of Aϕ , Aϑ , Rϕ and Rϑ are given in Appendix D3.

Taking two successive moving averages of the first equation, the
second Hilbert transform term gives

H
[
v′

0ϕ
]ε

= H
[
v′

0ϕ
ε]

= H
[
v′

0ϕ
]
, (D39)

and the third Hilbert transform term becomes

H [v0ϕ′]
ε

= H
[
v0ϕ′ε

]
= H

[
v0ϕ

′]
, (D40)

where I have used successively the commutativity and associativity
of the convolution product along with property (A3). After making
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use of (D28), (D32) and keeping the O(ε0) terms, I end up with the
following dynamical system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
v̇0

v0
+ θ̇0

θ0
= τ̇b + TneTn T

2Ln
H

[
v′

0

] − βv̇0

θ̇0

θ0
= TneTn T

[
v0 − 1

θ0

]
.

(D41)

v0 and θ0 obey a dynamical system where the main parameters
are α, β and τ̇b. The evolution of the background slip rate v0

and the background state variable θ0 are therefore similar to what
is expected for a fault with homogeneous frictional properties a0

and b0.

D3.2 Regime (IV) (ρc > ρw > 0.5)

The nucleation consists in a background acceleration of slip over
the log duration Tn, associated with foreshocks (rupture of single
patches). I am interested in the global large scale background accel-
eration that represents the envelop of the slip rate evolution. For that,
I will first estimate and separate the contribution of the foreshocks
in the evolution equation.

During foreshocks, v and θ vary over a typical normalized log
timescale Tf � Tn and over a typical length scale λ � Ln (Fig. D4).
Here I denote εf = Tf/Tn, and εx = λ/Ln and look for solutions of
(D26) in the form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v(X, T ) = V (X, T )

[
1 + 1

ε f

∑
k

νk(Yk, Tk)

]

θ (X, T ) = �(X, T )

[
1 + 1

ε f

∑
k

ωk(Yk, Tk)

]−1

,

(D42)

where:⎧⎪⎪⎨
⎪⎪⎩

Yk = X − Xk

εx

Tk = T − Tk

ε f
,

(D43)

(Xk, Tk) being the coordinates of the kth foreshock. In (D. 42), the
sum is taken over all the foreshocks. V and � are the envelops of v
and θ , and νk and ωk are positive functions describing the change in v
and θ during the kth foreshock. The 1/εf factor indicates that v and
1/θ perturbations created by foreshocks have a higher amplitude
than V and 1/�, as shown in Fig. D4. As expected from Fig. D4,
νk and ωk and their derivatives are non-zero only in the vicinity of
(Xk, Tk). From (D. 42), I get:

v̇

v
= V̇

V
+ 1

ε f

{ ∑
k ν̇k

ε f + ∑
k νk

}
. (D44)

νk, ν̇k and ν̇k/(ε f + νk) are only non-zero in a domain of size
(εx, εf) around (Xk, Tk). Because the different foreshocks do not
overlap, I have, in the vicinity of (Xj, Tj):∑

k ν̇k

ε f + ∑
k νk

= ν̇ j (Y j , T j )

ε f + ν j (Y j , T j )
=

∑
k

ν̇k

ε f + νk
. (D45)

Since the last equation is valid for any j, I end up with

v̇

v
= V̇

V
+ 1

ε f

∑
k

ν̇k

ε f + νk
� V̇

V
+ 1

ε f

∑
k

ν̇k

νk
. (D46)

Similarly, it is straightforward to show that

θ̇

θ
= �̇

�
+ 1

ε f

∑
k

ω̇k

ε f + ωk
� �̇

�
+ 1

ε f

∑
k

ω̇k

ωk
. (D47)

The spatial derivative of v becomes

v′ = V ′
[

1 + 1

ε f

∑
k

νk

]
+ 1

ε f εx
V

∑
k

ν ′
k (D48)

� V ′ + 1

ε f

∑
k

V ′
kνk + 1

ε f εx

∑
k

Vkν
′
k, (D49)

where Vk = V(Xk, Tk), and V ′
k = V ′(Xk, Tk). Therefore I can rewrite

the elastic interactions as

H
[
v′] (X, T ) � H

[
V ′] (X, T ) + 1

ε f

∑
k

V ′
kH [νk] (Yk, Tk)

+ 1

ε f εx

∑
k

VkH
[
ν ′

k

]
(Yk, Tk), (D50)

Similarly, the time derivative of v is given by

v̇ � V̇ + 1

ε f

∑
k

V̇kνk + 1

ε2
f

∑
k

Vk ν̇k, (D51)

where V̇k = V̇ (Xk, Tk). When re-injected into (D26), the expansion
(D42) therefore leads to the following balance between O(ε0

f ε
0
x )

terms:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αa
V̇

V
+ b

�̇

�
= τ̇b + TneTn T

2Ln
H

[
V ′] − β V̇

�̇

�
= TneTn T

[
V − 1

�

]
,

(D52)

which indicates that V and � obey to the first order the dynamical
system (D26).

Note that balancing terms of order ε−1
f ε0

x leads to a second system
governing the evolution of each νk and ωk:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αak
ν̇k

νk
+ bk

ω̇k

ωk
= TneTn Tk

2Ln

∑
k

V ′
kH [νk] − β V̇kνk

ω̇k

ωk
= TneTn Tk

[
Vkνk − ωk

�k

]
,

(D53)

where �k = �(Xk, Tk), ak = a(Xk) and bk = b(Xk).
In the following, I focus on V and � as represented in Fig. 4 (IV),

that is the envelops of v and θ which remain after removing the
foreshock contribution. From Fig. 4, V and � consist in a large
scale variation (typical wavelength Ln) plus a short wavelength
contribution (typical wavelength λ). Here again, let ε = λ/Ln, and
let assume the following expansion for V and �:⎧⎨
⎩

V (X, T ) = v0(X, T ) [1 + ϕ(Y, T )]

�(X, T ) = θ0(X, T ) [1 + ϑ(Y, T )]−1 ,
(D54)

where Y = X/ε, v0 and θ 0 represent the large scale evolution of V
and �, and ϕ and ϑ the short wavelength fluctuation of V and �. As
shown in Fig. D3, ϕ and ϑ also verify properties (D32) and (D36).
Therefore, I can follow the derivation developed for regimes (I) and
(II) and retrieve the same governing eq. (D41).

Here again, the background evolution is controlled by the pa-
rameters α, β and τ b. The evolution of the background slip rate v0

and the background state variable θ0 is once again similar to what
is expected for a fault with homogeneous frictional properties a0

and b0.
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Figure D4. Typical foreshock detail (foreshock Fk in Fig. 3d). (a) Slip rate evolution. The representation is the same as in Fig. 3. (b) Slip rate v and inverse
state variable 1/θ at x = xk. (c,d) Slip rate and state variable profiles during foreshock k. One profile is represented per black (blue) dot in panel (b). Darker
colours correspond to later times. Tf is the typical foreshock log duration. VSZ and VWZ stand for velocity strengthening zone and velocity weakening zone,
respectively.

D4 Critical length and nucleation duration

D4.1 Regimes (I) and (II) (ρw < 0.5)

As shown in the previous section, the heterogeneous fault is equiv-
alent to a homogeneous velocity weakening fault characterized by
a0 and b0 when ρw < 0.5. The nucleation of the main-shock is gov-
erned by eq. (D41), so that I expect to retrieve the nucleation lengths
of Appendix C defined with a0 and b0. The critical half-length Lc is
therefore given by eq. (C2). I have:

Lc = Lh . (D55)

For similar reasons, the nucleation duration tn is given by the ho-
mogenized duration th (eq. C5). I have

tn = th . (D56)

D4.2 Regime (III) (ρw > 0.5 and ρw > ρc)

If ρw > ρc, the first event on the fault degenerates. The critical
length and the nucleation duration are in this case controlled by the
local velocity weakening parameters a0 and b0 + �b. Lc is therefore
given by eq. (C1) as

Lc = Lw, (D57)

and tn by eq. (C4) as

tn = tw. (D58)

D4.3 Regime (IV) (ρc > ρw > 0.5)

In this case, a foreshock sequence is expected, so that it becomes
impossible to use the homogenized nucleation quantities Lh and th

of Appendix C. In order to account for the effect of foreshocks, I
use the critical nucleation crack approach presented in Appendix
D1. This time, the critical value zc of z could be approximated (with
a precision of ±1/2) by the solution of Km(z) = Kcs(z). The critical
crack length is then obtained by Lc = zcλ. From eqs (D16) and
(D20), I get the critical length Lc as

Lc = (1 − f )α

π (1 − α)2

(
1 + 3

√
cλ̃ + 9

4
cλ̃

)
, (D59)

where the constant c is given by

c = (1 − α + f α)2

π (1 − f )α
. (D60)

As shown in the previous section, the evolution of the background
slip rate is governed by eq. (D41), which solution is controlled by
the average parameters a0 and b0 through the factor α. Foreshocks
do not participate to this overall acceleration (they only contribute
to the nucleation length). The nucleation duration tn is therefore the
homogenized one th. In this case I have

tn = th . (D61)
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Abstract

This study is dedicated to the dynamics of slow slip reactivation on faults stim-

ulated by a fluid injection. Such fluid driven slow aseismic slip events are com-

monly observed on natural faults either in tectonic active areas or in the frame-

work of deep energy exploitation. We model the fault as a planar 2D velocity

strengthening rate-and-state frictional interface embedded in an elastic medium.

The fluid is injected at a constant rate and spreads diffusively along the fault

reducing the effective normal stress. We show that the fluid injection initiates

a shear crack on the fault. In a first phase, the shear crack remains confined to

the pressurized zone, and slip-rate increases exponentially with time. A second

phase starts at the onset of a rapid crack expansion. The shear crack during

phase two propagates faster than the pressurized zone. Depending on the pre-

stress conditions, the shear crack evolves towards two different regimes. If the

initial shear stress τ0 is larger than the steady-state frictional stress τr at the

seismic slip rate vsis, the slip rate and the crack expansion rate keep increasing.

This accelerating crack regime is similar to the nucleation of a dynamic rupture

on the fault. On the other hand, if τ0 < τr, the accelerated expansion progres-

sively slows down so that the crack enters a steady regime, characterized by a

constant expansion speed and a logarithmic increase of slip-rate. However, a

large majority of fault scenarios ultimately lead to this steady expansion regime.

In addition to the numerical results, we develop asymptotic expressions for the

the maximum slip rate history on the fault and the crack length history, show-

ing how initial prestress τ0, frictional conditions (ratio a/b), hydraulic properties
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and injection history control the dynamics of fluid induced aseismic slip events.

Keywords: Strengthening and mechanisms (A), Friction (B), Geological

materials (B), Crack mechanics (B), Boundary integral equations (C)
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1. Introduction

Many observations suggest that fluid flow at depth can reactivate slip on

preexisting crustal faults. Fluids may have a natural origin (rainfall events,

deep source), or can be related to geo-resource exploitation (geothermal oper-

ations, waste water injection, reservoir lake impoundement). If rapid enough5

slip is reactivated (typically at slip rates greater than 1 cm.s−1), the fault rup-

tures in an earthquake, such as the commonly oberved induced earthquakes

(Deichmann and Giardini, 2009; Ellsworth, 2013). However, the fluid-induced

reactivation of faults can lead to much slower slip speeds, leading to the occur-

rence of a slow or aseismic event (Cornet et al., 1997; Cornet, 2016; Guglielmi et al.,10

2015). Aseismic slip in turn may trigger earthquake sequences (Schaff et al.,

1998; Bourouis and Bernard, 2007; Wei et al., 2015; Lengliné et al., 2017). Aseis-

mic slip is even suspected to be one of the dominant mechanisms releasing in-

jected energy at depth (Goodfellow et al., 2015; Duboeuf et al., 2017). Under-

standing the physics controlling the dynamics of aseismic slip events triggered15

by fluid injections is therefore crucial to better constrain the energy partitioning

in the subsurface or in a geological reservoir, and to better assess the associated

seismogenic hazard.

Recent advances in the study of the mechanics of fluid-fault interaction

have essentially focused on the stability of frictional slip when a fluid is lo-20

cally injected and diffuses within a fault (Garagash and Germanovich, 2012;

Cappa et al., 2018; Bhattacharya and Viesca, 2019), or when a hydraulic frac-

ture propagates along a frictional fault (Azad et al., 2017). All these studies

have shown how the pore pressure related reduction in effective normal stress

triggers the reactivation of a slow aseismic slip, that eventually degenerates into25

2



a dynamic rupture. In most of the fault scenarios investigated, the aseismic slip

(and the dynamic slip if initiated) is excited well beyond the pressurized region of

the fault. This strong aseismic response (stronger that the pore pressure pertur-

bation) is even more pronounced when the fault experiences significant frictional

weakening (Garagash and Germanovich, 2012; Azad et al., 2017; Cappa et al.,30

2018), or if slip-induced permeability enhancement takes place (Cappa et al.,

2018; Bhattacharya and Viesca, 2019). The transition to dynamic rupture is

furthermore facilitated by initial stress conditions closer to failure, and by an

injection scenario leading to an abrupt increase of over-pressure within the fault

zone (Garagash and Germanovich, 2012; Azad et al., 2017).35

All these studies rely on a frictional description involving either a constant

friction coefficient or a slip weakening friction coefficient. Such descriptions

impose a minimum over-pressure to trigger aseismic slip. Below this reactiva-

tion threshold, no slip occurs. Furthermore, the slip-rate dependence of friction

needed to explain the dynamics of aseismic slip on tectonic faults (Marone et al.,40

1991; Perfettini and Avouac, 2004; Helmstetter and Shaw, 2009; Jolivet et al.,

2013) is not accounted for by such frictional models. A long history of rock fric-

tion experiments has demonstrated that the rate-and-state friction (Dieterich,

1979; Ruina, 1983) captures both the slip-rate and slip history dependance of

friction. Contrary to the slip weakening description, the rate-and-state law does45

not imposes a stress threshold to activate slip, which may lead to a fairly dif-

ferent behavior than what has been obtained under slip weakening or constant

friction. This point still needs to be investigated. A rate-and-state friction co-

efficient has however been tested by Cappa et al. (2018) to model the in-situ

fault reactivation experiment by Guglielmi et al. (2015), leading to a somewhat50

larger aseismic response than the classical constant friction coefficient. However,

more efforts still need to be done to understand the effects of the rate-and-state

frictional rheology on fluid induced aseismic slip.

Here we propose to study the fluid induced reactivation of aseismic slip on

a Dieterich-Ruina rate-and-state frictional fault. We will extend the previous55

studies on fluid fault interaction by studying the effect of the rate-and-state
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parameters and the initial stress conditions on the induced aseismic slip. In

particular, we will focus on the evolution of maximum slip rate and the size of

the perturbed slip zone as the pore pressure perturbation proceeds. As far as

possible we will derive closed form approximate solutions for the maximum slip60

rate history and for the size evolution of the aseismic slow slip events.

2. Fault model

We consider the anti-plane fault model depicted in figure 1, consisting in

a linear 1D interface separating two 2D semi-infinite elastic media. The fault

is loaded by a constant normal stress σ, and a remote shear stress τ0. Anti-65

plane slip - δ(x, y, t) = w(x, 0+, t) − w(x, 0−, t), w being the z component of

the displacement, and t the elaspsed time - is resisted by friction within a

finite length crack of size 2L0. Outside the crack, the slip-rate is imposed at

a constant rate v∗. Here we consider rate-and-state friction within the crack,

which accounts for the slip rate and slip history dependence of friction usually70

observed in laboratory experiments (Dieterich, 1979; Marone, 1998). The fault

is furthermore permeated by a fluid injected at x = 0, and diffusing in the ±x
directions with pore pressure p. In this framework, the frictional stress along

the x direction τf is given by :

τf (x, t) = f(x, t) [σ − p(x, t)] , (1)

f being the rate-and-state friction coefficient defined as :75

f(x, t) = f0 + a ln
v(x, t)

v∗ + b ln
θ(x, t)v∗

dc
, (2)

where f0 is a constant friction coefficient, a and b are rate-and-state parameters,

dc the critical slip of rate-and-state friction needed to renew a population of

microscopic contacts. Since we are interested in the dynamics of slow aseismic

slip, rate strengthening properties are considered so that a > b. v is the slip rate

defined as v = δ̇. The state variable θ incorporates the slip history dependence80
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Figure 1: 2D mode III fault model considered in this study.

of the friction coefficient. Here it is assumed to evolve with time and slip rate

on the fault according to the ageing law (Ruina, 1983; Marone, 1998) :

θ̇(x, t) = 1− v(x, t)θ(x, t)

dc
. (3)

The steady-state friction coefficient fss at the slip rate v is obtained when θ̇ = 0,

so that θ = dc/v from equation (3). We get:

fss = f0 + (a− b) ln
v

v∗ . (4)

The steady-state frictional stress τss is then defined as τss = fss(σ − p). Fol-85

lowing Rubin and Ampuero (2005), we note Ω = vθ/dc the distance to steady

state, since f − fss = lnΩ.

We further assume that the slip distribution on the fault results from a

balance between the frictional stress τf (equation 1) and the z component of

the elastostatic stress τel = τyz(x, 0, t) = µ∂w/∂y(x, 0, t). τel could be written90

as :

τel(x, t) = τ0(x) −
µ

2
H [δ′] (x, t), (5)
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where τ0 corresponds to the prestress, that is the stress prevailing on the fault

before the onset of slip. The second term on the right-hand side is the static

shear stress generated by the slip distribution δ. The operator H is the Hilbert

transform, and the prime denotes a derivative with respect to the spatial coor-95

dinate x.

The fluid injection is modeled as a prescribed pore pressure history resulting

from a constant injection rate imposed at x = 0, and a diffusion along the

infinite x axis with a constant diffusivity D. Under such conditions, the pore

pressure history p is given by (see Turcotte and Schubert (2014) for details of100

the derivation):

p(x, t) = 2q
√
Dt

[
|η|(erf(|η|) − 1) +

e−η2

√
π

]
, (6)

where the similarity variable η is defined as η = x/2
√
Dt and q is the change

in pressure gradient (directly related to the fluid flux according to the Darcy’s

law) at the origin.

The time derivative of the quasi-static stress balance τf = τel, along with105

the state evolution law (3) leads to the following differential equations for the

evolution of slip rate v and state variable θ under prescribed pore pressure

history p:





(σ − p)

[
a
v̇

v
+ b

θ̇

θ

]
= τ̇b + f(v, θ)ṗ− µ

2
H [v′]

θ̇ = 1− vθ

dc
.

(7)

Considering a characteristic slip rate vc = v∗, a characteristic time tc = dc/v∗,
a characteristic length xc = µdc/bσ, and a characteristic pore pressure pc = σ,110

we can make the substitution:

v ⇒ v/vc, t⇒ t/tc, x⇒ x/xc, p⇒ p/pc, (8)
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so that the system (7) becomes in non-dimensional form:





(1− p)

[
α
v̇

v
+
θ̇

θ

]
= f̄(v, θ)ṗ− 1

2
H [v′]

θ̇ = 1− vθ,

(9)

where α = a/b and f̄ = f̄0 + α ln v + ln θ, f̄0 corresponding to f0/b. Similarly,

the pore pressure history (6) could be made non-dimensional. From the charac-

teristic lenth xc the characteristic time tc, and the characteristic pore pressure115

pc, we construct the characteristic diffusivity Dc = x2c/tc = µ2dcv ∗ /b2σ2, and

the characteristic pore pressure gradient qc = pc/xc = bσ2/µdc. Assuming the

substitution

D ⇒ D/Dc, q ⇒ q/qc, (10)

along with (8), the non-dimensional pore pressure history keeps the form (6).

In order to simplify the developments in the main text, we will in the fol-120

lowing make only use of non-dimensional quantities removing the over-bar on

f and f0. However, the figures will be labeled with dimensional quantities, so

that the relevant physical parameters appear more explicitly. A length L in the

main text will therefore correspond to the non-dimensional L̄ = Lbσ/µdc, but

not in the figure label.125

For a specific choice of the parameters α, q, D, and initial conditions v(x, 0),

θ(x, 0) the system (9) is solved numerically using a standard Runge-Kutta

Fehlberg scheme (Fehlberg, 1969) with adaptative time stepping. This requires

to evaluate the Hilbert transform of the slip rate gradient at each time step. For

that we follow the method proposed by Cochard and Rice (1997), on a grid of130

n = 8192 identical computational cells of normalized size h = 0.03 much smaller

than the typical normalized process zone size Lb = 1 (Perfettini and Ampuero,

2008; Rubin and Ampuero, 2005) in order to ensure continuity. This algorithm

results in the slip rate and state variable history v(x, t) and θ(x, t), in response

to a fluid injection.135
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3. Results

We performed several fluid injection tests at constant rate in our fault model.

In each scenario, we considered a normalized diffusivity D = 4.369, which cor-

responds to hydraulic diffusivities ranging between 10−6 m2.s−1 and 0.1 m2.s−1

assuming standard values for the shear modulus µ ∼ 3.1010 Pa, for the rate-and-140

state parameter b ∼ 10−3−10−2, for the reference creep rate v∗ = 10−9−10−10

m.s−1 (representative of creeping faults), for the lithostatic stress σ ∼ 100 MPa

(representative of approximately 3 km depth) and the critical slip distance dc be-

tween 1 mm and 1 µm (Marone, 1998). Typical diffusivities within fault gouge

are expected to vary within this range (Rice, 2006; Jaeger et al., 2009). We145

considered a constant normalized pore pressure gradient at the origin q = 0.01,

which corresponds to a pressure gradient of the order of 300 Pa.m−1 to 100

MPa.m−1 with the same reference parameters. We tested 8 values of the ve-

locity strengthening frictional parameter α between 1.1 (weakly strengthening

behavior) to 2.5 (strongly strengthening behavior). All the injection scenarios150

were performed on a fault initially slipping at the background slip rate v = 1.

For all the frictional parameters, we considered three different uniform initial

state variable θ0 = 1, e2 and e−2, so that the initial stress on the fault is re-

spectively equal to, slightly above or slightly below steady state at v = 1 from

equations (2) and (4). The three initial stress conditions indeed correspond to155

τ0 − τ0ss = 0, 2 or −2, τ0ss being the steady state frictional stress at the reference

slip rate v = 1, and with p = 0. All the simulations were stopped before the

maximum pore pressure exceeds the lithostatic normal stress σ, so that no mode

I hydraulic fracture is created (which implies a loss of frictional contact, so that

the model used here is no longer valid).160

Two characteristic slip responses to a fluid injection are illustrated in figure 2:

as the pore pressure perturbation develops, slip accelerates on a patch centered

on the injection point (figures 2(a) and (b)). Within the slipping patch, the

initial stress is reduced, and redistributed on the non perturbed remote portions

of the fault (figures 2(c) and (d)). The fluid injection therefore initiates the165
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Figure 2: Two examples of fluid driven fault slip reactivation: fault initially at steady state

(a,c), and initially above steady state (b,d).(a,b): Normalized slip rate. (c,d): Normalized

shear stress change. τ0 is the initial stress on the fault before the injection, and τ0ss the

steady-state frictional stress at the reference slip rate v∗ and pore pressure p = 0. The profiles

being symmetric around x = 0, only the right half profiles are represented. a.s. corresponds

to along strike. (e): Slipping patch normalized half-length (or slip front position), defined as

the size of the patch where slip rate exceeds the red line in figures (a,b). Gray dotted lines

indicate iso-pressure levels. The grey numbers are levels of normalized pore pressure. (f):

Maximum normalized slip rate. Each dot in (e,f) corresponds to a profile in figures (a,b,c,d).

Blue lines and symbols correspond to phase I of slip reactivation, black lines and symbols

correspond to the second phase of slip reactivation (see main text for details).
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development of a shear crack on the fault. As this will be discussed later,

two mechanisms drive the development of this crack: the reduction of effective

normal stress due to the presence of fluid, or the initial prestress.

We observe two successive phases in the evolution of such a pressurized

crack: at the very beginning of the injection (phase I), the accelerated patch170

approximately conserves a constant length, but rapidly, it starts to expand along

strike (phase II). During phase I, the maximum slip rate on the crack increases

exponentially with time from injection start. As illustrated in figure 2, we get

a different behavior during phase II for different initial stress conditions: for a

fault initially at steady state, the crack expansion occurs approximately at a175

constant rupture speed (figure 2(a,c,e)), and the maximum slip rate increases

logarithmically in time (figure 2(f)). For a fault initially above steady state,

both the crack length and the maximum slip rate diverge in a finite time (figure

2(b,d,e,f)). In the following we will refer to these two modes as the steady crack

(constant rupture speed), or the accelerating crack (diverging slip rate).180

The half crack length L(t) and the maximum slip rate vm(t) histories for all

the fault scenarios investigated are shown in figure 3. As illustrated in figure

2, L(t) is defined as the half length of the patch experiencing more than a 10

times increase in slip rate. From figure 3, L(t) and vm(t) are both influenced

by the frictional conditions α and by the initial state of stress. Interestingly,185

neither the steady nor the accelerating crack follows an iso-pressure path: the

crack dynamics is not directly controlled by the pore pressure diffusion. In

all the scenarios the crack propagates faster than the pressurized zone does.

However, all the results lead either to the steady crack, or to the accelerating

crack. The latter fault response is typically obtained for a α parameter close to190

the weakening transition (i.e. for α close to 1), and for a fault initially stressed

above steady state.

In the following, we will study the details of slip rate acceleration during

phase I, the transition to phase II, and the crack expansion during phase II.

10
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Figure 3: Shear crack half length (a,b,c) and maximum slip rate (d,e,f) as a function of

time from the start of injection for all the fault scenarios investigated here. (a,d): Fault

initially slightly below steady state (τ0 − τ0ss = −2bσ). (b,e): Fault initially at steady state

(τ0 − τ0ss = 0). (c,f): Fault initially slightly above steady state (τ0 − τ0ss = 2bσ) . The color

scale refers to the rate-and-state frictional parameter α = a/b. Black dashed lines in figures

(a,b,c) indicate iso-pressure levels. See figure 2 for details.
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3.1. Phase I: initial slip rate acceleration195

As shown in appendix A, the initial localized slip rate acceleration could

be understood to the first order as a balance between the direct effect term

αv̇/v and the approximate rate of change of effective normal stress f0ṗ. The

other terms appearing in the first equation of (9) being negligible. In this

framework, the maximum slip rate vm is reached where the pore pressure is200

maximum, that is at the injection point. It is shown in appendix A that vm

evolves approximately as:

vm(t) = exp(
√
t/ta), (11)

where ta is a characteristic time scale given by:

ta =
π

4

α2

Df2
0 q

2
. (12)

This first phase ends when steady state is reached at the fault center (see figure

A.8), marking the onset of crack expansion. It is shown in appendix A, that the205

onset of phase II occurs at time tI given by:

tI ≃ ta(ln 2ta)
2. (13)

As illustrated in figure 4, equation (11) provides a good estimates of the

exponential increase of the maximum slip rate along the fault. Furthermore,

the expression (13) for tI provides the correct order of magnitude for the tran-

sition time to phase II, in particular for small values of α. For larger values,210

it anticipates the transition by a factor of 2. This is certainly due to all the

approximations leading to equation (13).

During phase I, we do not detect any significant increase of the length of

the crack (no points for phase I in figures 3(a), (b) and (c)). This does not

mean that the accelerating patch does not slightly expands: initially the slip215

rate is below the threshold used to track the crack size (v = 10). Because of

the balance between the direct effect and the pore pressure rate, the size of the

12
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Figure 4: Normalized maximum slip rate increase during phase I. Colored symbols correspond

to the different fault scenarios (different rate-and-state frictional parameter α = a/b and

different initial stress). The black dashed line is the theoretical prediction of equation (11).

The colored dashed lines are the theoretical estimates for the end of phase I (tI ) provided by

equation (13). Characteristic times ta and tI are defined in the main text.
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accelerating patch is directly controlled by the diffusion length
√
Dt, as shown

in figures A.9(a) and A.10(a).

3.2. Phase II: slip rate increase and expansion220

The onset of phase II is characterized by a steepening of the slip rate profile

at the crack tip (last blue profiles in figure 2(a) and (b)). Simultaneously, the

slip rate maximum vm moves from the fault center to the crack front. The

initiation of such a sharp slip front was observed for all the fault scenarios

considered here. As noted earlier, the slip front then evolves in two different225

ways: either the peak slip rate increases, and the front accelerates in the case of

an accelerating crack (figure 2(b-d)), or the peak slip rate decreases so that the

sharp front dies away (figure 2(a-c), leading to a smoother front propagating at

a constant speed (steady crack). In this latter case, the slip rate is maximum

at the crack center. In the following, we will make the distinction between the230

maximum slip rate vm and the peak slip rate vp, that is the slip rate at the tip

of sharp propagating fronts. In the case of an accelerating crack (figure 2(b)),

vm = vp.

3.2.1. Accelerating crack

In order to study in detail the dynamics of the accelerating crack, we concen-235

trate on the fault scenarios characterized by α = 1.1 or 1.2 and an initial state

of stress above steady state (τ0−τ0ss > 0), which provide the most characteristic

examples of such a dynamics (figure 3). In appendix A, it is shown that the

accelerating crack is characterized by a square-root shaped displacement pro-

file at the crack tip, and a positive stress drop ∆τtip near the tip of the crack240

(i.e. the difference between the initial stress and the residual stress left by the

process zone). A quasi-static energy balance at the tip indicates that the crack

half-length is approximately given by the characteristic length Lc defined by

Rubin and Ampuero (2005):

L ∼ Lc =
1

π

[
ln vmθ0

ln θ0 − (α− 1) ln vm

]2
. (14)
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Furthermore, the rupture speed (crack expansion rate) L̇ depends on the max-245

imum (peak) slip rate vm (Ampuero and Rubin, 2008), so that we have:

L̇ = 0.75
vm

ln vmθ0
. (15)

As shown in figure 5(a) and (b), the results of the numerical simulations converge

to the predictions of equations (14) and (15), for the two examples of accelerating

cracks detailed here.

The simple quasi-static crack model defined by equations (14) and (15) pro-250

vides an explanation to the observed diverging crack length and maximum (or

peak) slip rate. Under velocity strengthening rheology (α > 1) and an initial

prestress above steady state (ln θ0 > 0), the two equations constrain L, L̇, vm (or

vp) and v̇m to be increasing functions of time. In particular, according to (14),

as vm increases, L blows up and diverges at a finite slip rate vl, approximately255

given by:

vl = θ
1/(α−1)
0 . (16)

However, we did not try to find a closed form solution to equations (14) and

(15) and we did not solve this system numerically. The solutions L(t) and vm(t)

would indeed be strongly influenced by our choice of initial conditions (poorly

defined at the end of phase I), and by the fact that equation (14) is approached260

relatively slowly (see figure 5(a)). Note that in this case, since the pore pressure

term does not enter into equation (14), the propagation is exclusively driven by

the release of initial prestress. Beyond the limit speed vl, the quasi-static crack

model fails, since the stress drop at the crack tip (denominator in equation (14),

see appendix A for details) becomes negative.265

More generally, such a mode of propagation is only possible if the stress drop

at the crack tip is positive. In all the simulations this kind of crack front was

observed, we computed the stress drop evolution ∆τtip. The results are reported

in figure 6 as a function of the (increasing) crack length. ∆τtip is always positive

at the onset of the propagation, then it strongly decreases as crack propagation270
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Figure 5: Numerical vs. theoretical dynamics of accelerating cracks, obtained with initial

stress above steady state (τ0 − τss0 = 2bσ). (a): crack half-length as a function of the

theoretical length Lc (expected from a quasi-static energy balance at the crack tip). ∆τpr

is the peak to residual stress drop, ∆τtip is the stress drop at the crack tip (see main text

for details). (b): rupture speed (crack expansion speed), as a function of the theoretical

prediction by (Ampuero and Rubin, 2008) (A.R. rupture speed vc). vm is the maximum slip

rate. Colored dots indicate the numerical solution. Black dashed lines indicate the perfect

match between numerical solution and theoretical estimates Lc and vc.
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Figure 6: Stress drop at the crack tip ∆τtip during crack expansion (phase II) for all the

scenarios an accelerating crack was enough developped to be observed. (a): Fault initially

slightly below steady state (τ0−τ0ss = −2bσ). (b): Fault initially at steady state (τ0−τ0ss = 0).

(c): Fault initially slightly above steady state (τ0 − τ0ss = 2bσ). Color scale corresponds to

the rate-and-state friction parameter α = a/b. Dots are the numerical results. Dashed

and dashed dotted lines are the approximations of equation (17). The balck horizontal line

indicates ∆τtip = 0. The fault scenarios not represented (or partially represented) correspond

to situations where the accelerating crack was too short lived.
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proceeds and eventually becomes negative. At larger crack length, ∆τtip either

increases smoothly if negative, or decreases smoothly if positive. As shown in

figure 6, the evolution of ∆τtip is well captured by the approximate expression

of ∆τtip provided in appendix A:

∆τtip(t) = ln θ0 − (α − 1) ln vp(t) + f0p(L, t), (17)

where p(L, t) is the pressure at the crack front x = L and time t. Initially,275

when the crack process zone is within the pressurized region, the third term

dominates, so that ∆τtip is positive. The initiation of an accelerating crack

could therefore be attributed to the decrease of effective normal stress within the

pressurized region. As the crack expands faster than the pressurized region, this

term decreases, and the first two term become important, until they dominate280

(figure 6). When the pore pressure term becomes negligible, the evolution of

∆τtip becomes smoother.

The evolution of ∆τtip shows that if in many cases, an accelerating crack

could be initiated at early times, this kind of solution can not be sustained

during the whole simulation, because ∆τtip quickly becomes negative. This285

is typically what happens in figure 2(a,c). The only way of maintaining this

accelerating crack beyond the pressurized zone is to keep the first two terms of

equation (17) positive, that is if vp < vl. From equation (16), we see that if the

initial stress is below steady state (θ0 ≤ 0), then vl is smaller than the initial slip

rate v = 1, and the accelerating crack can not develop towards instability. For290

faults initially above steady state (θ0 > 0), we obtain vl = 4.85×108 for α = 1.1,

vl = 2.2× 104 for α = 1.2, which is well above the observed maximum slip rates

(figure 3(f)). Under stronger velocity strengthening properties (α > 1.2), we get

vl between 3 and 800, which is of the order of (or below) the observed maximum

slip rates. Equation (16) therefore provides a first order estimate of the range of295

slip rates that could be obtained on a prestressed velocity strengthening fault.

As the accelerating crack dies away, the simulations evolve towards a steady

propagation, that is detailed in the next section.
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3.2.2. Steady crack

It is shown in appendix A that this second mode of crack propagation is to300

the first order controlled by a balance between the elasticity (i.e. the elastic

stress transfers) and the approximate rate of effective normal stress change f0ṗ.

In other words, the crack evolves as if it were governed by a constant friction

coefficient within the slipping zone. Here the pore pressure increase drives the

crack expansion (and not the initial prestress). When assuming this simplified305

stress balance within the crack along with the conservation of total stress along

the fault, it could be shown (appendix A) that the crack half size grows linearly

in time as:

L(t) = vrt =
f0qD

λ(α− 1)− ln θ0
t, . (18)

where vr is a constant rupture speed. As during phase I, the maximum slip

rate vm is reached at the injection point, and approximately increases as the310

logarithm of time:

vm(t) = c

(
1 + ln

√
t

ts

)
, c =

4f0qD

π
, ts = 4

λ2(α− 1)2 − ln θ0
2

f2
0 q

2D
.

(19)

c and ts are a typical slip rate and a characteristic time scale respectively. In

both equations (18) and (19), λ corresponds to the logarithm of maximum slip

rate on the fault, which has been assumed constant in the derivations of ap-

pendix A. Since the maximum slip rate approximately increases logarithmically315

in time for the steady crack, the changes in λ = ln vm are negligible compared

to the linear increase of crack length L, and the variations of vm. If we consider

λ as the average value of ln vm during phase II for the steady crack, we get

4.6 < λ < 5.2. In the following we therefore assume λ = 5.

Numerical simulations leading to a steady crack approximately converge to320

the predictions of equations (18) and (19), as illustrated in figure 7. For t > 10ts,

the maximum slip rate and the crack half size follow a logarithmic and linear

increase respectively. The approach to the asymptotic solution for vm is in some
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Figure 7: Normalized maximum slip rate (a) and normalized slip front position (b) for the

simulations leading to a steady crack expansion during phase II. Only times t > tI are rep-
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by Asperity Density
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Abstract The period Tr of repeating earthquakes scales as V−1
c M1∕6

0 , Vc being the creep rate of the fault
and M0 the seismic moment of the events. Models consisting of a single asperity embedded in a creeping
fault capture this scaling but fail to explain the variability in recurrence time observed during natural
sequences. Here I show by a statistical analysis of repeating earthquakes generated in a rate-and-state fault
model, that the observed scaling and variability in Tr are reproduced if a population of asperities is
considered. For that, the density of asperities needs to be smaller than a critical threshold allowing
system-size ruptures. Creep mediated stress transfers control the variability in Tr in this regime, which
increases with asperity density. Beyond that density, the seismicity is highly clustered leading to
moment-independent recurrence. The dynamics of repeating earthquakes could therefore be an indicator
of the amount of seismogenic asperities on creeping faults.

Plain Language Summary Repeating earthquakes are particular events rupturing periodically
the same patch of a fault. The time delay separating two successive events increases as the energy liberated
during one event to the power 1∕6 and decreases as the inverse long-term slip rate on the fault. Models
considering an isolated source reproduce this scaling but fail to explain the slight deviations in periodicity
reported for many repeating earthquake sequences. Here I present a statistical analysis of repeating
earthquake sequences generated in a model of interacting sources distributed on a planar slowly slipping
fault (at typical slip rates of cm yr−1). If the density of sources is small enough, the relationship between
periodicity and liberated energy is reproduced. At higher densities seismicity is clustered leading to and
energy-independent recurrence. I also show that variability in recurrence increases with the source density.
This is mainly related to variations in fault slip rate between the sources.

1. Introduction
Repeating earthquakes are particular events consisting of a quasiperiodic release of the same amount of
seismic moment on a specific fault patch (asperity). Such events are commonly observed on major creeping
faults (Bürgmann et al., 2000; Nadeau & McEvilly, 1997; Nadeau et al., 1995; Nadeau & Johnson, 1998;
Poupinet et al., 1984). An important observation about repeating earthquakes is that their recurrence time
(period Tr) scales as V−1

c M1∕6
0 , Vc being the long-term slip rate of the fault and M0 the seismic moment of

individual events (Chen et al., 2007; Nadeau & Johnson, 1998).

Several mechanical models have been proposed to explain the periodicity and the recurrence-moment scal-
ing. They all consist of an isolated asperity embedded in a fault creeping at a constant rate because of tectonic
loading (Beeler et al., 2001; T. Chen & Lapusta, 2009; Sammis & Rice, 2001). The asperity is characterized
by periodic stick-slip oscillations supporting the observed regularity (the slip phase corresponds to an earth-
quake). If the stress drop is constant and if no slip is accumulated on the asperity during interseismic periods,
Tr increases as M1∕3

0 . However, considering a moment dependent stress drop, or a small amount of aseismic
creep, or partial ruptures during interseismic periods of the asperity, the Tr ∼ V−1

c M1∕6
0 scaling is usually

recovered (Cattania & Segall, 2019; Beeler et al., 2001; T. Chen & Lapusta, 2009, 2019; Sammis & Rice, 2001).
This success has motivated the use of repeating earthquake sequences to monitor aseismic creep on deep
faults (Bürgmann et al., 2000; Chen et al., 2008; Gardonio et al., 2015, 2018; Igarashi et al., 2003; Nadeau &
McEvilly, 1999; Schmidt et al., 2005; Templeton et al., 2008; Uchida & Matsuzawa, 2011; Uchida et al., 2003,
2006, 2009).
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Such ideal models however do not fully reproduce other observations such as the deviations from perfect
periodicity and constant moment reported for many repeating earthquake sequences. This is in particular
the case of the transient variations in Tr associated with accelerated creep following the Loma-Prieta earth-
quake (Schaff et al., 1998), or the changes in Tr and M0 observed for repeating earthquake sequences on the
San Andreas fault following moderate size earthquakes (K. H. Chen et al., 2009, 2013; Lengliné & Marsan,
2009). Even though some of the variability could be attributed to partial ruptures of the main asperity
(Cattania & Segall, 2019; T. Chen & Lapusta, 2019), seismological observations suggest more complex mod-
els. Asperities are in particular far from being isolated on faults, and a precise analysis of source parameters
often suggest a set of overlapping sources of slightly different sizes rather than a single asperity (Dublanchet
et al., 2015; Ellsworth & Bulut, 2018; Godano et al., 2015). Perturbations from the perfect repeating earth-
quake model are therefore also attributed to the (static and dynamic) stress redistributions occurring within
a population of repeating asperities and between the asperities and the creeping fault (K. H. Chen et al.,
2009, 2013; Lui & Lapusta, 2016, 2018).

A better understanding of the dynamics of repeating earthquake sequences therefore requires to consider
the mechanical interaction between different sources. Under which mechanical conditions a population of
interacting asperities generates quasiperiodic earthquakes, what kind of asperity distribution is required to
get the observed Tr ∼ V−1

c M1∕6
0 scaling, and what mechanical parameter controls the variability in recur-

rence time are the main unanswered questions raised by seismological observations. In order to study these
issues, I analyze here the synthetic repeating earthquake sequences generated by a rate-and-state fault
model. After a brief description of the model and the synthetic dataset, I will present the statistical analysis
of the recurrence times and seismic moments. Finally I will relate the statistical properties of the repeating
earthquake sequences to the mechanical properties prevailing on the fault.

2. Model and Data
In this study, I use the fault model and the synthetic earthquake catalogs produced by Dublanchet (2018).
The fault model consists of a planar 2D interface separating two 3D elastic slabs of thickness H. Constant slip
rate is imposed at the boundaries (z = ±H) so that relative slip is forced in the x direction on the fault (see
supporting information, Figure S1 for the fault geometry). Slip on the fault results from a balance between
(aging) rate-and-state friction (J. H. Dieterich, 1979; Ruina, 1983) and elastic stresses. Elastic stresses incor-
porate the loading due to moving boundaries, and the quasi-dynamic stress transfers between the different
fault patches (Rice, 1993).

Seismogenic asperities (sources of repeating earthquakes) are modeled as unstable circular velocity weaken-
ing patches (a − b < 0, a and b being the rate-and-state friction parameters) distributed on a stable velocity
strengthening fault (a − b > 0). Asperities are large enough to allow for the nucleation of earthquakes.
Velocity strengthening regions favor stable creep. The asperity distribution is characterized by the asperity
density 𝜌 defined as the ratio between velocity weakening area and total fault area.

From a given loading rate v*, slab thickness H, asperity distribution and initial conditions (slip rate and
stress), the model allows to compute the slip rate and stress history on each point of the fault. A synthetic
earthquake catalog is then extracted from the slip rate history assuming an earthquake occurs each time the
slip rate exceeds a threshold of the order of 1 cm s−1 (Rubin & Ampuero, 2005). The catalog lists the location
in space and time, the source size, and the seismic moment of each event.

Here I use the synthetic catalogs of Dublanchet (2018), obtained under 29 different fault scenarios consider-
ing different values of H and different asperity densities 𝜌. In all the scenarios, asperity sizes R are distributed
between two values R1 and R2 = 10R1 according to a power law of exponent p = −3∕2, and the asperities
do not overlap. H is in any case much larger than R2 so that it does not influence significantly my results. In
order to simplify the analysis detailed in the next section, I selected the catalogs corresponding to periods of
quasi constant average slip rate Vc on the fault. I end up with a total of 12,204 events out of 14 different fault
scenarios (details about the selected simulations are provided in S1 Introduction, Figure S1, and Table S1).

In each selected catalog, I then extract repeating earthquake sequences assuming that two events belong
to the same sequence if their hypocenter is separated by less than the minimum asperity size R1. For the
following analysis, I only considered the 456 sequences consisting of at least five events, with normalized
magnitude larger than −4 (see Data Set S1 and Figure S2 for the definition of the normalized magnitude).
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Figure 1. (a) Recurrence times Tr versus seismic moment M0 for all the repeating earthquake sequences considered. Colors indicate the asperity density 𝜌.
Gray dashed lines indicate the observed scaling Tr ∼ M1∕6

0 , black dashed lines the scaling expected for constant stress drop and no aseismic slip on the
asperities Tr ∼ M1∕3

0 . Tr and M0 are normalized by the typical time dc∕v* and 𝜇3d3
c∕b2

0𝜎
2, respectively, where v* is the remote imposed displacement rate, dc is

the critical slip of the rate-and-state friction law, b0 is the reference rate-and-state b parameter used in Dublanchet (2018), 𝜇 is the shear modulus of the
medium, and 𝜎 the normal stress acting on the fault. (b) Normalized recurrence time VcTr∕dc versus seismic moment. The variables are here again normalized
as in (a). Vc is the average slip rate on the fault. (c) Mean value and standard deviation of the best p parameter explaining data in (a) and (b) (assuming
Tr ∼ Mp

0 ). Red dashed lines indicate particular scalings discussed in the main text (p = 0, 1∕3 or 1∕6). The blue vertical line indicates the critical asperity
density 𝜌* defined by Dublanchet et al. (2013b). (d) Probability density function of the inverted p parameter for different asperity densities. Black dashed lines
indicate the same scalings as red dashed lines in (c).

−4 approximately corresponds to the rupture of the smallest patch R1 (Dublanchet, 2018). Doing so, I elim-
inate most of the partial ruptures. Magnitudes larger than −4 are approximately power-law distributed
(Dublanchet, 2018).

3. Results
The relationship between recurrence time Tr and seismic moment M0 for the different repeating earthquake
sequences is represented in Figure 1a. The error bars indicate that all of the repeating earthquake sequences
slightly deviate from the perfect repeating earthquake model. For low enough asperity density (𝜌 ≤ 0.55),
Tr tends to increase as M1∕6

0 and not as M1∕3
0 as expected from a constant stress drop crack model (Nadeau

& McEvilly, 1999). However, for higher asperity densities (𝜌 = 0.71 or 𝜌 = 0.74), we get approximately the
same Tr at any value of the seismic moment M0.

Furthermore, different fault scenarios lead to different intercepts of the Tr ,M0 relationship (Figure 1a). All
the fault scenarios are characterized by different average slip rates Vc on the fault (Dublanchet, 2018). As
illustrated in Figures S2, S4, S6, S8, S10, S12, S14, S16, S18, S20, S22, S24, S26, and S28, Vc is approximately
constant during the time period considered.. Following Chen et al. (2007), I interpret the different intercepts
observed in Figure 1a as being due to different average slip rates Vc and define the normalized recurrence
time T∗

r as

T∗
r =

Vc

v∗
Tr . (1)

Doing so, all the results obtained for small enough asperity density collapse to the same tendency (Figure 1b).
In this case, the different sequences follow the observed Tr ∼ V−1

c M1∕6
0 scaling. This suggests that the
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dynamics of repeating earthquakes is primarily controlled by creep. Higher densities of asperities still do
not follow this trend.

To better quantify the Tr ,M0 relationship obtained, I fit my results with a law of the form

Tr = kMp
0 (2)

and analyze the resulting exponent p. The uncertainty about the parameter p is obtained by resampling the
data 100 times within the error bars. The results are represented in Figures 1c and 1d. Here again, most of the
p values are in the vicinity of 1∕6 for low enough density of asperity. As 𝜌 increases to 0.55, the distribution of
p is still centered in the vicinity of 1∕6, but the scatter increases significantly. For higher densities 𝜌 > 0.57,
the p values are clustered around 0. This statistical analysis confirms that the Tr ∼ M1∕6

0 scaling is replaced
by a moment-independent recurrence as the asperity density increases.

The different dynamics observed for small and large asperity densities could be interpreted from the critical
density of asperity defined by Dublanchet et al. (2013b). The critical density of asperity 𝜌* corresponds to
the minimum density allowing the different asperities to be connected in large ruptures. It is shown in
Dublanchet et al. (2013b) that 𝜌* depends on the distribution of rate-and-state frictional properties a and b,
in a way that 𝜌* makes the spatial average of a−b vanish. Considering the a and b values used in Dublanchet
(2018), I have here 𝜌* ≃ 0.55. In my results, the Tr ∼ M1∕6

0 is obtained under subcritical asperity density
(𝜌 < 𝜌*) while the Tr = constante regime characterizes supercritical densities (𝜌 > 𝜌*). In the vicinity of the
critical density (for 𝜌 = 0.55 and 𝜌 = 0.57), the scatter of the possible p values could possibly be interpreted
as a progressive transition between the two regimes (Figures S18, S20, S22, S26, and S28).

When 𝜌 < 𝜌*, asperities are either far from each other or separated by strong velocity strengthening barriers,
so that they could be considered as isolated. The behavior of asperities is then similar to what is analyzed by
T. Chen & Lapusta (2009, 2019) and Cattania and Segall (2019); some amount of aseismic slip occurs on the
velocity weakening patches during interseismic periods, due to the penetration of a slow slip front from the
edges of the patches. When 𝜌 > 𝜌*, it is shown in Figure S6 and S8, that the seismic activity is highly clustered
in time around a mainshock that ruptures the entire fault. It consists of a foreshock sequence accelerating
to the main event, as detailed in Dublanchet (2017). The mainshock releases all the accumulated stress,
so that no immediate aftershocks are observed and the mean slip (creep) decreases and remains negligible
until the next foreshock sequence starts (see average slip history in Figures S6 and S8). Here the absence
of aftershocks is similar to the quiescence of microseismicity following large stress release in the model
by Jiang and Lapusta (2016). The recurrence of all the events is to the first order the recurrence T0 of the
mainshock. Dimensionally, T0 is of the order of T0 ∼ Δ𝜏H∕𝜇v*, Δ𝜏 being the stress drop of the mainshock.
Δ𝜏 and therefore T0 are independent of the seismic moment released (Dublanchet, 2018). With my choice of
parameters, T0 ≃ 3 to 6.104dc∕v* for the two supercritical scenarios shown here (see Dublanchet (2018) for
the values of stress drop). These values are a correct estimate of the mainshock periodicity (Figures 1a, S6,
and S8). The important scatter observed for some sequences (Figures 1a and 1b) is associated with asperities
rupturing more than once during the foreshock sequences of the main events, leading to punctual very small
recurrences times. The two scalings shown in Figure 1a therefore reflect a creep control of the seismicity at
𝜌 < 𝜌*, which disappears at 𝜌 > 𝜌*.

For each repeating earthquake sequence, I also computed the covariance COV for the recurrence time Tr
(standard deviation divided by the mean of Tr (Chen et al., 2013; Lengliné & Marsan, 2009). Recall that
COV = 0 indicates perfect periodicity, while COV = 1 corresponds to Poissonian behavior, and COV > 1 to
clustering. Results are shown in Figure 2 for different asperity densities. Overall, the COV in Figure 2 are
within the range of observations (K. H. Chen et al., 2007; K. H. Chen et al., 2009, 2013; Lengliné & Marsan,
2009). Here again, I observe a slight increase of the covariance when approaching the critical density from
below (Figure 2h). For asperity densities close to critical, I observe an important scatter of the COV. This
result could be interpreted as follows. The deviation from the perfect repeating earthquake model (mea-
sured by the covariance) could be attributed to the mechanical interaction between asperities: the stress
perturbations associated by nearby ruptures either hasten or delay the next rupture on a particular asperity.
Such stress perturbations could either emanate from a direct static triggering effect (which is more pro-
nounced as the interasperity distance decreases, i.e. as the asperity density increases) or from accelerated
creep events generated by a nearby rupture (here again, the effect is more pronounced if velocity strengthen-
ing areas are more sensitive to stress perturbations, which corresponds to asperity densities closer to critical
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Figure 2. (a–g) Distribution of the covariance COV for the recurrence time Tr , the inverse static stressing rate 1∕ .𝜏s, and the inverse stressing rate related to creep
1∕ .𝜏c versus asperity density for all the repeating earthquake sequences shown in Figure 1a. (h) Cumulative distribution function  for the covariance on Tr .

Dublanchet et al., 2013b). At higher densities, the covariance decreases again (see peak of COV distribution
around 0.2 in Figure 2g); because of the synchronization operated by the mainshock rupture, the scatter in
Tr becomes less important. The COV and thus the variability of Tr within repeating earthquake sequences
are therefore controlled in these simulations by the asperity density. Very low densities lead to more reg-
ular repeating earthquakes. Note that different fault scenarios correspond to the same asperity density, so
that the variations in COV for the same 𝜌 likely reflects different mechanical environment of the repeating
earthquake sequences (distance to nearest asperities, extent of the creeping surroundings).

In order to discriminate between the effect of static stress redistribution and the effect of stress changes
mediated by creep in the deviations from periodicity, I compared the statistics of stressing rates (stressing rate
due to static effects .𝜏s and due to creep .𝜏c) to my statistics of recurrence times. The underlying assumption
is that interevent time delay scales as the inverse stressing rate: Δ𝜏∕ .𝜏, Δ𝜏 being the constant stress drop of
the events. For each interevent period in a given sequence (on the source i), I computed an approximate
stressing rate related to static stress transfers following Chen et al. (2013). For that, I identify all the events j
occuring during the interevent period and estimate the static shear stress perturbation dSij on the repeating
source as

dSi𝑗 =
1

6𝜋
M0𝑗

r3
i𝑗

, (3)

where M0j is the seismic moment released by the earthquake j and rij is the distance between the source of j
and the source of the sequence i. The total static stress perturbation dS acting on the source of sequence i is
the sum of dSij over j, and the static stressing rate on i (𝜏s) is then given by dS divided by the interevent time.
For the same interevent period, I estimate the creep related stressing rate .𝜏c from the average stress history
on the fault. .𝜏c is computed as the average absolute value of stressing rate prevailing during interseismic
periods (coseismic periods contain also the static effects).

I therefore end up with a value of .𝜏s and .𝜏c for each Tr in our dataset. .𝜏s and .𝜏c are estimates of the stressing
rates due to static stress transfers and creep, respectively. Tr is compared to 1∕ .𝜏s and 1∕ .𝜏c in Figure 3. We
immediately see that Tr increases approximately as 1∕ .𝜏c, while there is no clear relationship between Tr
and 1∕ .𝜏s (the same Tr could be obtained for a wide range of different 1∕ .𝜏s). Furthermore, it is shown in
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Figure 3. Recurrence times Tr versus inverse stressing rate 1∕ .𝜏. Triangles correspond to the inverse static stressing
rates 1∕ .𝜏s, circles indicate the inverse stressing rate related to creep 1∕ .𝜏c. Gray dashed lines correspond to linear
scaling Tr ∼ 1∕ .𝜏 (constant stress drop). Recurrence times and stressing rates are normalized using the mechanical
parameters defined in Figure 1.

Figure 2 that the distribution of the covariance of 1∕ .𝜏c follows the covariances of Tr more closely than
the distribution of the covariance of 1∕ .𝜏s does. In other words, the fluctuations in Tr within one sequence
tracks the fluctuations in 1∕ .𝜏c. The mechanical interactions between the repeating earthquake sources (at
the origin of the fluctuations of Tr) seem therefore to being dominated by creep mediated stress transfers
rather than by direct static stress perturbations. The increase of the covariance (and the variability) of Tr
as the fault gets closer to the critical density of asperities is therefore not dominated by the decrease of the
distances between asperities but by an increase of the sensitivity of fault creep to seismic ruptures.

4. Discussion
One of the main conclusion of this analysis concerns the scaling between recurrence time Tr and moment
rate M0 in the context of interacting repeating earthquake sequences. The scaling in the model reproduces
the observed scaling Tr ∼ V−1

c M1∕6
0 if the density of asperities is smaller than the critical density allowing

large ruptures to connect a group of asperities. One could conclude that tectonic faults where such a scal-
ing has been observed are characterized by a subcritical density of asperities. Repeating earthquakes have
been reported within the coseismic rupture zones of the Tohoku and Izmit earthquake (Bouchon et al., 2011;
Uchida, 2019) where we would expect supercritical asperity densities. It is however unclear whether they
obey the classical scaling since Tr decreases during the nucleation process. These events are usually inter-
preted as being triggered by the acceleration of slow slip within the nucleation zone (Dublanchet, 2017). We
therefore expect the M1∕6

0 to be locally possible but over the limited duration of the seismic cycle involving
significant creep. Identifying supercritical asperity regions based on repeating earthquakes dynamics would
therefore require to observe over the entire cycle of the mainshock, which is currently not possible for mega
earthquakes.

An important issue regarding interacting repeating earthquake sequences is whether such sequences could
be used to monitor slip rate on the fault. Because of the inverse dependence of Tr on slip rate Vc, the dis-
tribution of Tr could thus be used as a measure of the average slip rate. Here again, a subcritical density of
asperities could be interpreted as asperities being mechanically isolated from each other so that they behave
as in the models by Beeler et al. (2001) and T. Chen and Lapusta (2009).
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It has been shown here that the variability of recurrence time in a particular sequence (covariance on Tr)
increases with the asperity density (low density leads to more regular repeating earthquakes than higher
densities). Based on Figure 2g, an increase of 𝜌 from 0.2 to 0.57 corresponds to an increase of mean COV
from 0.15 to 0.45, which indicates that COV increases approximately linearly with asperity density in the
subcritical regime. This result is similar to the observations reporting more regular repeating earthquake
sequences when sources are far from each other on the Longitudinal Valley Fault in Taiwan (K. H. Chen
et al., 2009), and on Parkfield segment on the San Andreas Fault (Chen et al., 2013). K. H. Chen et al. (2013)
and K. H. Chen et al. (2009) report an increase of COV from 0.05 − 0.2 to 0.7 − 0.9 as the number of larger
earthquakes in the vicinity of the repeating source increase by a factor of 5 to 10 in the Parkfield area and
on the Longitudinal Valley Fault in Taiwan. This is compatible with a linear dependance of the COV on
the number of neighbors. My results thus provide a reasonable order of magnitude and more importantly a
mechanical interpretation for COV differences in terms of seismogenic asperity density.

In my model, the scatter in Tr within individual sequences is the consequence of mechanical interaction
dominated by creep mediated stress transfers. It has been shown that static stress transfers may explain the
variability of repeating earthquake sequences in Parkfield mainly after and in the direct vicinity of significant
earthquakes (magnitude 4 to 5) (K. H. Chen et al., 2010, 2013). Such conditions may not be achieved in my
model because of the limited source size range considered. However, accelerated creep is also frequently
associated with variations in recurrence intervals of repeating earthquake sequences (K. H. Chen et al., 2010;
Lui & Lapusta, 2016; Schaff et al., 1998), which is similar to my results.

This conclusion was furthermore based on a very simple estimation of the stressing rate associated with
static effects, and on the assumption that interevent time depends linearly on the inverse of the stressing
rate. Under rate-and-state friction, the interevent time delay is a non linear function of the stressing history
(J. Dieterich, 1994; J. H. Dieterich 1992). I did not consider such non linear response here. Furthermore, I
used an oversimplified estimation of the shear stress redistribution (equation (3)). Nevertheless, the domi-
nance of creep related stress transfers is also supported by the strong dependence of Tr on the average creep
rate Vc.

My results suggest that the distance to critical asperity density is the relevant mechanical parameter con-
trolling the dynamics of repeating earthquake sequences on a creeping fault. Here I have only considered
fault scenarios with different asperity densities but with the same values of velocity weakening and velocity
strengthening a and b rate-and-state parameters. These parameters do play a role in the interaction pro-
cesses between asperities leading to variability in recurrence and moment (Lui & Lapusta, 2018). However,
since the critical asperity density depends on a and b distribution (Dublanchet et al., 2013b), I expect that
the only effect of varying these parameters would be to shift the transition between the different regimes
observed. However, this issue requires more attention.

In this analysis, I should mention that our model being quasi-dynamic, it does not produce any dynamic
(wave mediated) stress perturbations. Such dynamic stresses may play a role in the interaction between
different repeating earthquake sequences and in the scatter in the observed Tr . This issue still needs to be
investigated.

Note also that we have not discussed the scatter in the moments characterizing a particular repeating earth-
quake sequence. This scatter is usually less important than the scatter in Tr (Figures 1a and 1b). Among
possible origins for the variability in seismic moment are slight changes in stress drop caused by different
stressing conditions (Dublanchet et al., 2013a) or a trade-off between changes in Tr and M0 so that the seis-
mic moment is released at an average constant rate. This latter explanation would require the same scatter
in Tr and M0.

5. Conclusion
Based on the analyses of synthetic repeating earthquake sequences, I have shown that the observed rela-
tionship between recurrence time, seismic moment, and long-term slip rate on faults Tr ∼ V−1

c M1∕6
0 could

emerge even under mechanical interaction between repeating earthquake sources (asperities) as long as
the density of sources is smaller than a critical threshold allowing large ruptures to develop. The inverse
dependence of Tr with slip rate Vc in this model supports the use of complex interacting repeating earth-
quake sequences to monitor fault slip rate. I also provide a mechanical interpretation of the variability of
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recurrence time in a particular sequence in terms of asperity density and enhanced creep mediated stress
transfers. However, I can not fully rule out contribution from static and dynamic stress transfers in the
transient changes of the recurrence time.
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