A Workflow for Real-time Visualization and Data Analysis of Gesture using Motion Capture

Résumé : In this paper, we investigate new ways to understand and to analyze human gesture in a research context applied on co-verbal gesture across language. The research project focuses on the quality of the movement and consider the gesture “pulse of effort.“ We propose a workflow for real-time gesture analysis to visualize gesture kinematics features (Velocity, Acceleration, Jerk) from heterogeneous data (Video, Motion Capture and Gesture Annotations) at the same time base. The tools designed here provide immersive and interactive explorations of data: users can test hypotheses and embody gesture visualization and descriptors adopting different Frames of Reference using augmented reality. We have conducted an evaluation protocol in the field of linguistics that compares 496 annotated gestures to benchmark the workflow.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02474193
Contributeur : Compte de Service Administrateur Ensam <>
Soumis le : mardi 11 février 2020 - 11:15:57
Dernière modification le : lundi 24 février 2020 - 11:28:25

Fichier

 Accès restreint
Fichier visible le : 2020-03-01

Connectez-vous pour demander l'accès au fichier

Identifiants

Citation

Jean-François Jégo, Vincent Meyrueis, Dominique Boutet. A Workflow for Real-time Visualization and Data Analysis of Gesture using Motion Capture. MOCO '19: 6th International Conference on Movement and Computing, Oct 2019, TEMPE AZ, United States. pp.1-6, ⟨10.1145/3347122.3359598⟩. ⟨hal-02474193⟩

Partager

Métriques

Consultations de la notice

19