Morphological PDE and dilation/erosion semigroups on length spaces

Abstract : This paper gives a survey of recent research on Hamilton-Jacobi partial dierential equations (PDE) on length spaces. This theory provides the background to formulate morphological PDEs for processing data and images supported on a length space, without the need of a Riemmanian structure. We first introduce the most general pair of dilation/erosion semigroups on a length space, whose basic ingredients are the metric distance and a convex shape function. The second objective is to show under which conditions the solution of a morphological PDE in the length space framework is equal to the dilation/erosion semigroups.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : Jesus Angulo <>
Soumis le : samedi 21 mars 2015 - 16:49:06
Dernière modification le : mardi 27 mars 2018 - 16:06:13
Archivage à long terme le : lundi 14 septembre 2015 - 06:07:58


Fichiers produits par l'(les) auteur(s)



Jesus Angulo. Morphological PDE and dilation/erosion semigroups on length spaces. 12th International Symposium on Mathematical Morphology, May 2015, Reykjavik, Iceland. pp.509-521, ⟨10.1007/978-3-319-18720-4_43⟩. ⟨hal-01108145v2⟩



Consultations de la notice


Téléchargements de fichiers